Меню
Бесплатно
Главная  /  Законы  /  Презентация по физике на тему «Производство, передача и использование электрической энергии» скачать бесплатно. Производство, использование и передача электроэнергии Презентация по физике на тему производство электроэнергии

Презентация по физике на тему «Производство, передача и использование электрической энергии» скачать бесплатно. Производство, использование и передача электроэнергии Презентация по физике на тему производство электроэнергии

Старцова Татьяна

АЭС, ГЭС,ТЭЦ, виды передачи электроэнергии.

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Презентация на тему: “ производство и передача электроэнергии ” Ученицы 11 а класса ГБОУ СОШ № 1465 Старцовой Татьяны. Учитель: Круглова Лариса Юрьевна

Производство электроэнергии Электроэнергия производится на электростанциях. Существует три основных типа электростанций: Атомные электростанции (АЭС) Гидроэлектростанции (ГЭС) Тепловые электростанции, или же теплоэлектроцентрали (ТЭЦ)

Атомные электростанции Атомная электростанция (АЭС) - ядерная установка для производства энергии в заданных режимах и условиях применения, располагающаяся в пределах определённой проектом территории, на которой для осуществления этой цели используются ядерный реактор (реакторы) и комплекс необходимых систем, устройств, оборудования и сооружений с необходимыми работниками

Принцип работы

На рисунке показана схема работы атомной электростанции с двухконтурным вод о - водяным энергетическим реактором. Энергия, выделяемая в активной зоне реактора, передаётся теплоносителю первого контура. Далее теплоноситель поступает в теплообменник (парогенератор), где нагревает до кипения воду второго контура. Полученный при этом пар поступает в турбины, вращающие электрогенераторы. На выходе из турбин пар поступает в конденсатор, где охлаждается большим количеством воды, поступающим из водохранилища. Компенсатор давления представляет собой довольно сложную и громоздкую конструкцию, которая служит для выравнивания колебаний давления в контуре во время работы реактора, возникающих за счёт теплового расширения теплоносителя. Давление в 1-м контуре может доходить до 160 атм (ВВЭР-1000).

Помимо воды, в различных реакторах в качестве теплоносителя могут применяться также расплавы металлов: натрий, свинец, эвтектический сплав свинца с висмутом и др. Использование жидкометаллических теплоносителей позволяет упростить конструкцию оболочки активной зоны реактора (в отличие от водяного контура, давление в жидкометаллическом контуре не превышает атмосферное), избавиться от компенсатора давления. Общее количество контуров может меняться для различных реакторов, схема на рисунке приведена для реакторов типа ВВЭР (Водо-Водяной Энергетический Реактор). Реакторы типа РБМК (Реактор Большой Мощности Канального типа) использует один водяной контур, реакторы на быстрых нейтронах - два натриевых и один водяной контуры, перспективные проекты реакторных установок СВБР-100 и БРЕСТ предполагают двухконтурную схему, с тяжелым теплоносителем в первом контуре и водой во втором.

Выработка электроэнергии Мировыми лидерами в производстве ядерной электроэнергии являются: США (836,63 млрд кВт·ч/год), работает 104 атомных реактора (20% от вырабатываемой электроэнергии) Франция (439,73 млрд кВт·ч/год), Япония (263,83 млрд кВт·ч/год), Россия (177,39 млрд кВт·ч/год), Корея (142,94 млрд кВт·ч/год) Германия (140,53 млрд кВт·ч/год). В мире действует 436 энергетических ядерных реакторов общей мощностью 371,923 ГВт, российская компания «ТВЭЛ» поставляет топливо для 73 из них (17 % мирового рынка)

Гидроэлектростанции Гидроэлектростанция (ГЭС) - электростанция, в качестве источника энергии использующая энергию водного потока. Гидроэлектростанции обычно строят на реках, сооружая плотины и водохранилища. Для эффективного производства электроэнергии на ГЭС необходимы два основных фактора: гарантированная обеспеченность водой круглый год и возможно большие уклоны реки, благоприятствуют гидростроительству каньонообразные виды рельефа.

Принцип работы

Цепью гидротехнических сооружений является обеспечение необходимым напором воды, поступающей на лопасти гидротурбины, которая приводит в действие генераторы, вырабатывающие электроэнергию. Необходимый напор воды образуется посредством строительства плотины, и как следствие концентрации реки в определенном месте, или деривацией - естественным током воды. В некоторых случаях для получения необходимого напора воды используют совместно и плотину, и деривацию. Непосредственно в самом здании гидроэлектростанции располагается все энергетическое оборудование. В зависимости от назначения, оно имеет свое определенное деление. В машинном зале расположены гидроагрегаты, непосредственно преобразующие энергию тока воды в электрическую энергию.

Гидроэлектрические станции разделяются в зависимости от вырабатываемой мощности: мощные - вырабатывают от 25 МВт и выше; средние - до 25 МВт; малые гидроэлектростанции - до 5 МВт. Также они делятся в зависимости от максимального использования напора воды: высоконапорные - более 60 м; средненапорные - от 25 м; низконапорные - от 3 до 25 м.

Крупнейшие ГЭС в мире Наименование Мощность ГВт Среднегодовая выработка Собственник География Три Ущелья 22,5 100 млрд кВт ч р. Янцзы, г. Сандоупин, Китай Итайпу 14 100 млрд кВт ч р. Карони, Венесуэла Гури 10,3 40 млрд кВт ч р. Токантинс, Бразилия Черчилл-Фолс 5,43 35 млрд кВт ч р. Черчилл, Канада Тукуруи 8,3 21 млрд кВт ч р. Парана, Бразилия / Парагвай

Теплоэлектростанции Тепловая электростанция (или тепловая электрическая станция) - электростанция, вырабатывающая электрическую энергию за счет преобразования химической энергии топлива в механическую энергию вращения вала электрогенератора.

Принцип работы

Типы Котлотурбинные электростанции Конденсационные электростанции (КЭС, исторически получили название ГРЭС - государственная районная электростанция) Теплоэлектроцентрали (теплофикационные электростанции, ТЭЦ) Газотурбинные электростанции Электростанции на базе парогазовых установок Электростанции на основе поршневых двигателей С воспламенением от сжатия (дизель) C воспламенением от искры Комбинированного цикла

Передача электроэнергии Передача электрической энергии от электрических станций до потребителей осуществляется по электрическим сетям. Электросетевое хозяйство -естественно-монопольный сектор электроэнергетики: потребитель может выбирать, у кого покупать электроэнергию (то есть энергосбытовую компанию), энергосбытовая компания может выбирать среди оптовых поставщиков (производителей электроэнергии), однако сеть, по которой поставляется электроэнергия, как правило, одна, и потребитель технически не может выбирать электросетевую компанию. С технической точки зрения, электрическая сеть представляет собой совокупность линий электропередачи (ЛЭП) и трансформаторов, находящихся на подстанциях.

Линии электропередачи представляют собой металлический проводник, по которому проходит электрический ток. В настоящее время практически повсеместно используется переменный ток. Электроснабжение в подавляющем большинстве случаев - трёхфазное, поэтому линия электропередачи, как правило, состоит из трёх фаз, каждая из которых может включать в себя несколько проводов.

Линии электропередачи делятся на 2 типа: Воздушные Кабельные

Воздушные Воздушные ЛЭП подвешены над поверхностью земли на безопасной высоте на специальных сооружениях, называемых опорами. Как правило, провод на воздушной линии не имеет поверхностной изоляции; изоляция имеется в местах крепления к опорам. На воздушных линиях имеются системы грозозащиты. Основным достоинством воздушных линий электропередачи является их относительная дешевизна по сравнению с кабельными. Также гораздо лучше ремонтопригодность (особенно в сравнении с бесколлекторными КЛ): не требуется проводить земляные работы для замены провода, ничем не затруднён визуальный осмотр состояния линии. Однако, у воздушных ЛЭП имеется ряд недостатков: широкая полоса отчуждения: в окрестности ЛЭП запрещено ставить какие-либо сооружения и сажать деревья; при прохождении линии через лес, деревья по всей ширине полосы отчуждения вырубаются; незащищённость от внешнего воздействия, например, падения деревьев на линию и воровства проводов; несмотря на устройства грозозащиты, воздушные линии также страдают от ударов молнии. По причине уязвимости, на одной воздушной линии часто оборудуют две цепи: основную и резервную; эстетическая непривлекательность; это одна из причин практически повсеместного перехода на кабельный способ электропередачи в городской черте.

Кабельные Кабельные линии (КЛ) проводятся под землёй. Электрические кабели имеют различную конструкцию, однако можно выявить общие элементы. Сердцевиной кабеля являются три токопроводящие жилы (по числу фаз). Кабели имеют как внешнюю, так и междужильную изоляцию. Обычно в качестве изолятора выступает трансформаторное масло в жидком виде, или промасленная бумага. Токопроводящая сердцевина кабеля, как правило, защищается стальной бронёй. С внешней стороны кабель покрывается битумом. Бывают коллекторные и бесколлекторные кабельные линии. В первом случае кабель прокладывается в подземных бетонных каналах - коллекторах. Через определённые промежутки на линии оборудуются выходы на поверхность в виде люков - для удобства проникновения ремонтных бригад в коллектор. Бесколлекторные кабельные линии прокладываются непосредственно в грунте.

Бесколлекторные линии существенно дешевле коллекторных при строительстве, однако их эксплуатация более затратна в связи с недоступностью кабеля. Главным достоинством кабельных линий электропередачи (по сравнению с воздушными) является отсутствие широкой полосы отчуждения. При условии достаточно глубокого заложения, различные сооружения (в том числе жилые) могут строиться непосредственно над коллекторной линией. В случае бесколлекторного заложения строительство возможно в непосредственной близости от линии. Кабельные линии не портят своим видом городской пейзаж, они гораздо лучше воздушных защищены от внешнего воздействия. К недостаткам кабельных линий электропередачи можно отнести высокую стоимость строительства и последующей эксплуатации: даже в случае бесколлекторной укладки сметная стоимость погонного метра кабельной линии в разы выше, чем стоимость воздушной линии того же класса напряжения. Кабельные линии менее доступны для визуального наблюдения их состояния (а в случае бесколлекторной укладки - вообще недоступны), что также является существенным эксплуатационным недостатком.

Слайд 1

Слайд 2

Слайд 3

Слайд 4

Слайд 5

Слайд 6

Слайд 7

Слайд 8

Слайд 9

Слайд 10

Презентацию на тему "Производство и передача электроэнергии" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Физика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 10 слайд(ов).

Слайды презентации

Слайд 1

Слайд 2

Слайд 3

Электрическая энергия обладает неоспоримыми преимуществами перед всеми другими видами энергии. Её можно передавать по проводам на огромные расстояния со сравнительно малыми потерями и удобно распределять между потребителями. Главное же в том, что эту энергию с помощью достаточно простых устройств легко превратить в любые другие виды энергии: механическую, внутреннюю, энергию света и т.д.

Слайд 4

ХХ век стал веком, когда наука вторгается во все сферы жизни общества: экономику, политику, культуру, образование и т.д. Естественно, что наука непосредственно влияет на развитие энергетики и сферу применения электроэнергии. С одной стороны наука способствует расширению сферы применения электрической энергии и тем самым увеличивает ее потребление, но с другой стороны в эпоху, когда неограниченное использование невозобновляемых энергетических ресурсов несет опасность для будущих поколений, актуальными задачами науки становятся задачи разработки энергосберегающих технологий и внедрение их в жизнь.

Слайд 5

Использование электроэнергии.

Удвоение потребления электроэнергии происходит за 10 лет

Слайд 6

Рассмотрим эти вопросы на конкретных примерах. Около 80% прироста ВВП (внутреннего валового продукта) развитых стран достигается за счет технических инноваций, основная часть которых связана с использованием электроэнергии. Большая часть научных разработок начинается с теоретических расчетов. Все новые теоретические разработки после расчетов на ЭВМ проверяются экспериментально. И, как правило, на этом этапе исследования проводятся с помощью физических измерений, химических анализов и т.д. Здесь инструменты научных исследований многообразны - многочисленные измерительные приборы, ускорители, электронные микроскопы, магниторезонансные томографы и т.д. Основная часть этих инструментов экспериментальной науки работают на электрической энергии.

Слайд 7

Но наука не только использует электроэнергию в своей теоретической и экспериментальной областях, научные идеи постоянно возникают в традиционной области физики, связанной с получением и передачей электроэнергии. Ученые, например, пытаются создать электрические генераторы без вращающихся частей. В обычных электродвигателях к ротору приходится подводить постоянный ток, чтобы возникла "магнитная сила". Современное общество невозможно представить без электрификации производственной деятельности. Уже в конце 80-х годов более 1/3 всего потребления энергии в мире осуществлялось в виде электрической энергии. К началу следующего века эта доля может увеличиться до 1/2. Такой рост потребления электроэнергии прежде всего связан с ростом ее потребления в промышленности. Основная часть промышленных предприятий работает на электрической энергии. Высокое потребление электроэнергии характерно для таких энергоемких отраслей, как металлургия, алюминиевая и машиностроительная промышленность. Крупным потребителем является также транспорт. Всё большее количество железнодорожных линий переводится на электрическую тягу. Почти все деревни и села получают электроэнергию от государственных электростанций для производственных и бытовых нужд.

Слайд 8

Передача и распределение электроэнергии

1 % потерь электроэнергии в сутки- 0,5 млн.руб.убытка Для уменьшения тепловых потерь в линиях электропередачи (ЛЭП) можно увеличить сечение проводников S, что экономически невыгодно, либо уменьшить силу тока I. Чтобы передаваемая мощность p = IU осталось неизменной при уменьшении силы тока, необходимо увеличить напряжение U в ЛЭП (U-500 Кв.;750 Кв.; 1150 Кв.;- ЛЭП)

ПРОИЗВОДСТВО, ИСПОЛЬЗОВАНИЕ И ПЕРЕДАЧА ЭЛЕКТРОЭНЕРГИИ.

Производство электроэнергии.Тип электростанций

КПД электростанций

% от всей вырабатываемой энергии

Электрическая энергия обладает неоспоримыми преимуществами перед всеми другими видами энергии. Её можно передавать по проводам на огромные расстояния со сравнительно малыми потерями и удобно распределять между потребителями. Главное же в том, что эту энергию с помощью достаточно простых устройств легко превратить в любые другие виды энергии: механическую, внутреннюю, энергию света и т.д.Электрическая энергия обладает неоспоримыми преимуществами перед всеми другими видами энергии. Её можно передавать по проводам на огромные расстояния со сравнительно малыми потерями и удобно распределять между потребителями. Главное же в том, что эту энергию с помощью достаточно простых устройств легко превратить в любые другие виды энергии: механическую, внутреннюю, энергию света и т.д.

ХХ век стал веком, когда наука вторгается во все сферы жизни общества: экономику, политику, культуру, образование и т.д. Естественно, что наука непосредственно влияет на развитие энергетики и сферу применения электроэнергии. С одной стороны наука способствует расширению сферы применения электрической энергии и тем самым увеличивает ее потребление, но с другой стороны в эпоху, когда неограниченное использование невозобновляемых энергетических ресурсов несет опасность для будущих поколений, актуальными задачами науки становятся задачи разработки энергосберегающих технологий и внедрение их в жизнь.ХХ век стал веком, когда наука вторгается во все сферы жизни общества: экономику, политику, культуру, образование и т.д. Естественно, что наука непосредственно влияет на развитие энергетики и сферу применения электроэнергии. С одной стороны наука способствует расширению сферы применения электрической энергии и тем самым увеличивает ее потребление, но с другой стороны в эпоху, когда неограниченное использование невозобновляемых энергетических ресурсов несет опасность для будущих поколений, актуальными задачами науки становятся задачи разработки энергосберегающих технологий и внедрение их в жизнь.

Использование электроэнергии.Удвоение потребления электроэнергии происходит за 10 лет

Сферы
хозяйства

Количество используемой электроэнергии,%

Промышленность
Транспорт
Сельское хозяйство
Быт

70
15
10
4

Рассмотрим эти вопросы на конкретных примерах. Около 80% прироста ВВП (внутреннего валового продукта) развитых стран достигается за счет технических инноваций, основная часть которых связана с использованием электроэнергии. Большая часть научных разработок начинается с теоретических расчетов. Все новые теоретические разработки после расчетов на ЭВМ проверяются экспериментально. И, как правило, на этом этапе исследования проводятся с помощью физических измерений, химических анализов и т.д. Здесь инструменты научных исследований многообразны - многочисленные измерительные приборы, ускорители, электронные микроскопы, магниторезонансные томографы и т.д. Основная часть этих инструментов экспериментальной науки работают на электрической энергии.Рассмотрим эти вопросы на конкретных примерах. Около 80% прироста ВВП (внутреннего валового продукта) развитых стран достигается за счет технических инноваций, основная часть которых связана с использованием электроэнергии. Большая часть научных разработок начинается с теоретических расчетов. Все новые теоретические разработки после расчетов на ЭВМ проверяются экспериментально. И, как правило, на этом этапе исследования проводятся с помощью физических измерений, химических анализов и т.д. Здесь инструменты научных исследований многообразны - многочисленные измерительные приборы, ускорители, электронные микроскопы, магниторезонансные томографы и т.д. Основная часть этих инструментов экспериментальной науки работают на электрической энергии.

Но наука не только использует электроэнергию в своей теоретической и экспериментальной областях, научные идеи постоянно возникают в традиционной области физики, связанной с получением и передачей электроэнергии. Ученые, например, пытаются создать электрические генераторы без вращающихся частей. В обычных электродвигателях к ротору приходится подводить постоянный ток, чтобы возникла «магнитная сила».Но наука не только использует электроэнергию в своей теоретической и экспериментальной областях, научные идеи постоянно возникают в традиционной области физики, связанной с получением и передачей электроэнергии. Ученые, например, пытаются создать электрические генераторы без вращающихся частей. В обычных электродвигателях к ротору приходится подводить постоянный ток, чтобы возникла «магнитная сила».
Современное общество невозможно представить без электрификации производственной деятельности. Уже в конце 80-х годов более 1/3 всего потребления энергии в мире осуществлялось в виде электрической энергии. К началу следующего века эта доля может увеличиться до 1/2. Такой рост потребления электроэнергии прежде всего связан с ростом ее потребления в промышленности. Основная часть промышленных предприятий работает на электрической энергии. Высокое потребление электроэнергии характерно для таких энергоемких отраслей, как металлургия, алюминиевая и машиностроительная промышленность. Крупным потребителем является также транспорт. Всё большее количество железнодорожных линий переводится на электрическую тягу. Почти все деревни и села получают электроэнергию от государственных электростанций для производственных и бытовых нужд.

Слайд 2

Электроэнергия Электроэнергия - физический термин, широко распространённый в технике и в быту для определения количества электрической энергии, выдаваемой генератором в электрическую сеть или получаемой из сети потребителем. Основной единицей измерения выработки и потребления электрической энергии служит киловатт-час (и кратные ему единицы). Для более точного описания используются такие параметры, как напряжение, частота и количество фаз (для переменного тока), номинальный и максимальный электрический ток. Электрическая энергия является также товаром, который приобретают участники оптового рынка (энергосбытовые компании и крупные потребители-участники опта) у генерирующих компаний и потребители электрической энергии на розничном рынке у энергосбытовых компаний. Цена на электрическую энергию выражается в рублях и копейках за потребленный киловатт-час (коп/кВт·ч, руб/кВт·ч) либо в рублях за тысячу киловатт-часов (руб/тыс кВт·ч). Последнее выражение цены используется обычно на оптовом рынке. Динамика мирового производства электроэнергии по годам

Слайд 3

Динамика мирового производства электроэнергии Год млрд Квт*час 1890 - 9 1900 - 15 1914 - 37,5 1950 - 950 1960 - 2300 1970 - 5000 1980 - 8250 1990 - 11800 2000 - 14500 2002 - 16100,2 2003 - 16700,9 2004 - 17468,5 2005 - 18138,3

Слайд 4

Промышленное производство электроэнергии В эпоху индустриализации подавляющий объем электроэнергии вырабатывается промышленным способом на электростанциях. Доля вырабатываемой электроэнергии в России (2000 г) Доля вырабатываемой электроэнергии в мире Теплоэлектростанции (ТЭC) 67%, 582,4 млрд кВт·ч Гидроэлектростанции (ГЭС) 19%; 164,4 млрд кВт·ч Атомные станции (АЭС) 15%; 128,9 млрд кВт·ч В последнее время в связи с экологическими проблемами, дефицитом ископаемого топлива и его неравномерного географического распределения становится целесообразным вырабатывать электроэнергию способом используя ветроэнергетические установоки, солнечные батарей, малые газогенераторы. В некоторых государствах, например в Германии, приняты специальные программы, поощряющие инвестиции в производство электроэнергии домохозяйствами.

Слайд 5

Схема передачи электроэнергии

Слайд 6

Электрическая сеть - совокупность подстанций, распределительных устройств и соединяющих их линий электропередачи, предназначенная для передачи и распределения электрической энергии. Классификация электрических сетей Электрические сети принято классифицировать по назначению (области применения), масштабным признакам, и по роду тока. Назначение, область применения Сети общего назначения: электроснабжение бытовых, промышленных, сельскохозяйственных и транспортных потребителей. Сети автономного электроснабжения: электроснабжение мобильных и автономных объектов (транспортные средства, суда, самолёты, космические аппараты, автономные станции, роботы и т. п.) Сети технологических объектов: электроснабжение производственных объектов и других инженерных сетей. Контактная сеть: специальная сеть, служащая для передачи электроэнергии на движущиеся вдоль неё транспортные средства (локомотив, трамвай, троллейбус, метро).

Слайд 7

История российской, да и пожалуй, мировой электроэнергетики, берет начало в 1891 году, когда выдающийся ученый Михаил Осипович Доливо-Добровольский осуществил практическую передачу электрической мощности около 220 кВт на расстояние 175 км. Результирующий КПД линии электропередачи, равный 77,4%, оказался сенсационно высоким для такой сложной многоэлементной конструкции. Такого высокого КПД удалось достичь благодаря использованию трехфазного напряжения, изобретенного самим ученым. В дореволюционной России, мощность всех электростанций составляла лишь 1,1 млн кВт, а годовая выработка электроэнергии равнялась 1,9 млрд кВт*ч. После революции, по предложению В. И. Ленина был развернут знаменитый план электрификации России ГОЭЛРО. Он предусматривал возведение 30 электростанций суммарной мощностью 1,5 млн. кВт, что и было реализовано к 1931 году, а к 1935 году он был перевыполнен в 3 раза.

Слайд 8

В 1940 г суммарная мощность советских электростанций составила 10,7 млн кВт, а годовая выработка электроэнергии превысила 50 млрд кВт*ч, что в 25 раз превышало соответствующие показатели 1913 года. После перерыва, вызванного Великой Отечественной войной, электрификация СССР возобновилась, достигнув в 1950 г уровня выработки 90 млрд кВт*ч. В 50-е годы XX века, в ход были пущены такие электростанции, как Цимлянская, Гюмушская, Верхне-Свирская, Мингечаурская и другие. К середине 60-х годов, СССР занимал второе место в мире по выработке электроэнергии после США. Основные технологические процессы в электроэнергетике

Слайд 9

Генерация электрической энергии Генерация электроэнергии - это процесс преобразования различных видов энергии в электрическую на индустриальных объектах, называемых электрическими станциями. В настоящее время существуют следующие виды генерации: Тепловая электроэнергетика. В данном случае в электрическую энергию преобразуется тепловая энергия сгорания органических топлив. К тепловой электроэнергетике относятся тепловые электростанции (ТЭС), которые бывают двух основных видов: Конденсационные (КЭС, также используется старая аббревиатура ГРЭС); Теплофикационные (теплоэлектроцентрали, ТЭЦ). Теплофикацией называется комбинированная выработка электрической и тепловой энергии на одной и той же станции;

Слайд 10

Передача электрической энергии от электрических станций до потребителей осуществляется по электрическим сетям.Электросетевое хозяйство - естественно-монопольный сектор электроэнергетики: потребитель может выбирать, у кого покупать электроэнергию (т.е. энергосбытовую компанию), энергосбытовая компания может выбирать среди оптовых поставщиков (производителей электроэнергии), однако сеть, по которой поставляется электроэнергия, как правило, одна, и потребитель технически не может выбирать электросетевую компанию. Линии электропередачи представляют собой металлический проводник, по которому проходит электрический ток. В настоящее время практически повсеместно используется переменный ток. Электроснабжение в подавляющем большинстве случаев - трёхфазное, поэтому линия электропередачи, как правило, состоит из трёх фаз, каждая из которых может включать в себя несколько проводов. Конструктивно линии электропередачи делятся на воздушные и кабельные.

Слайд 11

Воздушные ЛЭП подвешены над поверхностью земли на безопасной высоте на специальных сооружениях, называемых опорами. Как правило, провод на воздушной линии не имеет поверхностной изоляции; изоляция имеется в местах крепления к опорам. На воздушных линиях имеются системы грозозащиты. Основным достоинством воздушных линий электропередачи является их относительная дешевизна по сравнению с кабельными. Также гораздо лучше ремонтопригодность (особенно в сравнении с бесколлекторными КЛ): не требуется проводить земляные работы для замены провода, ничем не затруднён визуальный осмотр состояния линии.

Слайд 12

Кабельные линии (КЛ) проводятся под землёй. Электрические кабели имеют различную конструкцию, однако можно выявить общие элементы. Сердцевиной кабеля являются три токопроводящие жилы (по числу фаз). Кабели имеют как внешнюю, так и междужильную изоляцию. Обычно в качестве изолятора выступает трансформаторное масло в жидком виде, или промасленная бумага. Токопроводящая сердцевина кабеля, как правило, защищается стальной бронёй. С внешней стороны кабель покрывается битумом.

Слайд 13

Эффективное использование электроэнергии Потребность в использовании электроэнергии с каждым днем увеличивается,т.к. мы живем в веке широкого развития индустриализации. Без электроэнергии не может функционировать ни промышленность,ни транспорт,ни научные учреждения,ни наш современный быт.

Слайд 14

Удовлетворить этот спрос можно двумя способами: I. Строительство новых мощных электростанций:тепловых, гидравлических и атомнх,но это требует времени и больших затрат. Так же на их функционирование нужны невозобновляемые природные ресурсы. II. Разработка новых методов и устройств.

Слайд 15

Но не смотря на все вышеперечисленные медоты добычи электроэнергии,её надо экономить и беречь и все у нас будет

Посмотреть все слайды

ПРЕЗЕНТАЦИЯ НА ТЕМУ:
“ПРОИЗВОДСТВО И ПЕРЕДАЧА
ЭЛЕКТРОЭНЕРГИИ”
Ученицы 11 а класса ГБОУ СОШ № 1465 Старцовой Татьяны.
Учитель: Круглова Лариса Юрьевна1.Производство электроэнергии с
помощью электростанций
а) АЭС
б) ГЭС
в) ТЭЦ
2.Передача электроэнергии,типы линий
электропередач
а) Воздушные
б) Кабельные

Производство электроэнергии

Электроэнергия производится на
электростанциях. Существует три основных
типа электростанций:
o Атомные электростанции (АЭС)
o Гидроэлектростанции (ГЭС)
o Тепловые электростанции, или же
теплоэлектроцентрали (ТЭЦ)

Атомные электростанции

Атомная
электростанция (АЭС) -
ядерная установка для
производства энергии в
заданных режимах и условиях
применения,
располагающаяся в пределах
определённой проектом
территории, на которой для
осуществления этой цели
используются ядерный
реактор (реакторы) и
комплекс необходимых
систем, устройств,
оборудования и сооружений с
необходимыми работниками

Принцип работы

.

На рисунке показана схема работы атомной
электростанции с двухконтурным водо - водяным
энергетическим реактором. Энергия, выделяемая в
активной зоне реактора, передаётся теплоносителю
первого контура. Далее теплоноситель поступает в
теплообменник (парогенератор), где нагревает до
кипения воду второго контура. Полученный при этом
пар поступает в турбины,
вращающие электрогенераторы. На выходе из турбин
пар поступает в конденсатор, где охлаждается большим
количеством воды, поступающим из водохранилища.
Компенсатор давления представляет собой довольно
сложную и громоздкую конструкцию, которая служит
для выравнивания колебаний давления в контуре во
время работы реактора, возникающих за счёт теплового
расширения теплоносителя. Давление в 1-м контуре
может доходить до 160 атм (ВВЭР-1000).

.

Помимо воды, в различных реакторах в качестве
теплоносителя могут применяться также расплавы
металлов: натрий, свинец, эвтектический сплав свинца с
висмутом и др. Использование жидкометаллических
теплоносителей позволяет упростить конструкцию
оболочки активной зоны реактора (в отличие от
водяного контура, давление в жидкометаллическом
контуре не превышает атмосферное), избавиться от
компенсатора давления. Общее количество контуров
может меняться для различных реакторов, схема на
рисунке приведена для реакторов типа ВВЭР (ВодоВодяной Энергетический Реактор). Реакторы типа
РБМК (Реактор Большой Мощности Канального типа)
использует один водяной контур, реакторы на быстрых
нейтронах - два натриевых и один водяной контуры,
перспективные проекты реакторных установок СВБР-100
и БРЕСТ предполагают двухконтурную схему, с тяжелым
теплоносителем в первом контуре и водой во втором.

Выработка электроэнергии

Мировыми лидерами в производстве ядерной
электроэнергии являются:
США (836,63 млрд кВт·ч/год), работает 104 атомных
реактора (20% от вырабатываемой электроэнергии)
Франция (439,73 млрд кВт·ч/год),
Япония (263,83 млрд кВт·ч/год),
Россия (177,39 млрд кВт·ч/год),
Корея (142,94 млрд кВт·ч/год)
Германия (140,53 млрд кВт·ч/год).
В мире действует 436 энергетических ядерных
реакторов общей мощностью 371,923 ГВт,
российская компания «ТВЭЛ» поставляет топливо
для 73 из них (17 % мирового рынка)

Гидроэлектростанции

Гидроэлектростанция (ГЭС) - электростанция, в
качестве источника энергии использующая энергию
водного потока. Гидроэлектростанции обычно строят
на реках, сооружая плотины и водохранилища.
Для эффективного производства электроэнергии на ГЭС
необходимы два основных фактора: гарантированная
обеспеченность водой круглый год и возможно большие
уклоны реки, благоприятствуют гидростроительству
каньонообразные виды рельефа.

Принцип работы

.

Цепью гидротехнических сооружений является
обеспечение необходимым напором воды, поступающей
на лопасти гидротурбины, которая приводит в действие
генераторы, вырабатывающие электроэнергию.
Необходимый напор воды образуется посредством
строительства плотины, и как следствие концентрации
реки в определенном месте, или деривацией -
естественным током воды. В некоторых случаях для
получения необходимого напора воды используют
совместно и плотину, и деривацию.
Непосредственно в самом здании гидроэлектростанции
располагается все энергетическое оборудование. В
зависимости от назначения, оно имеет свое
определенное деление. В машинном зале расположены
гидроагрегаты, непосредственно преобразующие
энергию тока воды в электрическую энергию.

.

Гидроэлектрические станции
разделяются в зависимости
от вырабатываемой мощности:
мощные - вырабатывают от 25 МВт и выше;
средние - до 25 МВт;
малые гидроэлектростанции - до 5 МВт.
Также они делятся в зависимости от
максимального использования напора
воды:
высоконапорные - более 60 м;
средненапорные - от 25 м;
низконапорные - от 3 до 25 м.

Крупнейшие ГЭС в мире

Наименование
Мощность
ГВт
Среднегодовая
выработка
Собственник
География
Три Ущелья
22,5
100 млрд кВт ч
р. Янцзы,
г. Сандоупин, Китай
Итайпу
14
100 млрд кВт ч
р. Карони, Венесуэла
Гури
10,3
40 млрд кВт ч
р. Токантинс, Бразилия
Черчилл-Фолс
5,43
35 млрд кВт ч
р. Черчилл, Канада
Тукуруи
8,3
21 млрд кВт ч
р. Парана,
Бразилия/Парагвай

Теплоэлектростанции

Тепловая электростанция (или тепловая
электрическая станция) -
электростанция, вырабатывающая
электрическую энергию за счет
преобразования химической
энергии топлива в механическую энергию
вращения вала электрогенератора.

Принцип работы

Типы

Котлотурбинные электростанции
Конденсационные электростанции (КЭС, исторически
получили название ГРЭС - государственная районная
электростанция)
Теплоэлектроцентрали (теплофикационные
электростанции, ТЭЦ)
Газотурбинные электростанции
Электростанции на базе парогазовых установок
Электростанции на основе поршневых
двигателей
С воспламенением от сжатия (дизель)
C воспламенением от искры
Комбинированного цикла

Передача электроэнергии

Передача электрической энергии от электрических
станций до потребителей осуществляется
по электрическим сетям. Электросетевое хозяйство -
естественно-монопольный сектор электроэнергетики:
потребитель может выбирать, у кого покупать
электроэнергию (то есть энергосбытовую компанию),
энергосбытовая компания может выбирать среди
оптовых поставщиков (производителей
электроэнергии), однако сеть, по которой поставляется
электроэнергия, как правило, одна, и потребитель
технически не может выбирать электросетевую
компанию. С технической точки зрения, электрическая
сеть представляет собой совокупность линий
электропередачи (ЛЭП) и трансформаторов,
находящихся на подстанциях.

.

Линии электропередачи представляют собой
металлический проводник, по которому проходит
.
электрический
ток. В настоящее время практически
повсеместно используется переменный ток.
Электроснабжение в подавляющем большинстве
случаев - трёхфазное, поэтому линия
электропередачи, как правило, состоит из трёх фаз,
каждая из которых может включать в себя несколько
проводов.

Линии электропередачи делятся на 2 типа:

Воздушные
Кабельные

Воздушные

Воздушные ЛЭП подвешены над поверхностью земли на безопасной высоте на
специальных сооружениях, называемых опорами. Как правило, провод на
воздушной линии не имеет поверхностной изоляции; изоляция имеется в местах
крепления к опорам. На воздушных линиях имеются системы грозозащиты.
Основным достоинством воздушных линий электропередачи является их
относительная дешевизна по сравнению с кабельными. Также гораздо лучше
ремонтопригодность (особенно в сравнении с бесколлекторными КЛ): не
требуется проводить земляные работы для замены провода, ничем не затруднён
визуальный осмотр состояния линии. Однако, у воздушных ЛЭП имеется ряд
недостатков:
широкая полоса отчуждения: в окрестности ЛЭП запрещено ставить какие-либо
сооружения и сажать деревья; при прохождении линии через лес, деревья по
всей ширине полосы отчуждения вырубаются;
незащищённость от внешнего воздействия, например, падения деревьев на
линию и воровства проводов; несмотря на устройства грозозащиты, воздушные
линии также страдают от ударов молнии. По причине уязвимости, на одной
воздушной линии часто оборудуют две цепи: основную и резервную;
эстетическая непривлекательность; это одна из причин практически
повсеместного перехода на кабельный способ электропередачи в городской
черте.

Кабельные

Кабельные линии (КЛ) проводятся под землёй. Электрические
кабели имеют различную конструкцию, однако можно выявить
общие элементы. Сердцевиной кабеля являются три
токопроводящие жилы (по числу фаз). Кабели имеют как
внешнюю, так и междужильную изоляцию. Обычно в качестве
изолятора выступает трансформаторное масло в жидком виде,
или промасленная бумага. Токопроводящая сердцевина кабеля,
как правило, защищается стальной бронёй. С внешней стороны
кабель покрывается битумом. Бывают коллекторные и
бесколлекторные кабельные линии. В первом случае кабель
прокладывается в подземных бетонных каналах - коллекторах.
Через определённые промежутки на линии оборудуются
выходы на поверхность в виде люков - для удобства
проникновения ремонтных бригад в коллектор.
Бесколлекторные кабельные линии прокладываются
непосредственно в грунте.

.

Бесколлекторные линии существенно дешевле коллекторных при
строительстве, однако их эксплуатация более затратна в связи с
недоступностью кабеля. Главным достоинством кабельных линий
электропередачи (по сравнению с воздушными) является отсутствие широкой
полосы отчуждения. При условии достаточно глубокого заложения,
различные сооружения (в том числе жилые) могут строиться
непосредственно над коллекторной линией. В случае бесколлекторного
заложения строительство возможно в непосредственной близости от линии.
Кабельные линии не портят своим видом городской пейзаж, они гораздо
лучше воздушных защищены от внешнего воздействия. К недостаткам
кабельных линий электропередачи можно отнести высокую стоимость
строительства и последующей эксплуатации: даже в случае бесколлекторной
укладки сметная стоимость погонного метра кабельной линии в разы выше,
чем стоимость воздушной линии того же класса напряжения. Кабельные
линии менее доступны для визуального наблюдения их состояния (а в случае
бесколлекторной укладки - вообще недоступны), что также является
существенным эксплуатационным недостатком.