Меню
Бесплатно
Главная  /  Упражнения  /  Дайте понятие бактериям и их классификации. Виды бактерий: вредные и полезные. Особенности строения бактерий

Дайте понятие бактериям и их классификации. Виды бактерий: вредные и полезные. Особенности строения бактерий

Классификация бактерий по форме.

По форме всœе бактерии делятся на 3 группы:

Шаровидные или кокки

Палочковидные или палочки

Извитые формы бактерий.

Кокки имеют округлую, шаровидную, овальную, пламени свечи, ланцетовидную форму и подразделяются на 6 подгрупп исходя из способа соединœения.

1 микрококки;

2 диплококки;

3 тетракокки;

4 стрептококки;

5 стафилококки;

6 сарцины.

Все кокки неподвижны, не образуют спор.
Размещено на реф.рф
Широко распространены в природе. Входят в состав заквасок кисломолочных. Могут быть болезнетворными (ангина, гонорея, менингит).

Палочковидные бактерии имеют вытянутую форму. Длина больше ширины. Легко меняют свою форму исходя из условий жизни, ᴛ.ᴇ. обладают полиморфизмом. Палочки - наиболее распространенная группа среди всœех бактерий. Могут быть не болезнетворными, но могут вызывать различные заболевания (тиф, дизентерия).

Палочки бывают подвижными и неподвижными образовывать и необразовывать споры. По способности образования споры палочки делятся на три группы:

Бактерии;

Бациллы;

Клостридии.

Извитые формы бактерий делятся на три группы:

1. вибрионы;

2. спириллы;

3. спирохеты.

Все извитые формы болезнетворные.

Строение и функции клеточной оболочки бактерий.

Клеточная оболочка покрывает клетку снаружи. Это плотная, упругая структура, выдерживающая перепад давления, состоящая из двух частей – наружной части, называемой клеточной стенкой и внутренней части – цитоплазматической мембраны (ЦПМ). И стенка и мембрана имеет поры (отверстия) через которые в клетку проходят питательные вещества и удаляются продукты жизнедеятельности. При этом через поры клеточной стенки питательные вещества проходят по молекулярной массе не более 1000, ᴛ.ᴇ. стенка при питании выполняет функции механического сита. Через поры ЦПМ питательные вещества проходят не по массе, а по мере нужнобности, ᴛ.ᴇ. она обладает полупроницаемостью.

Клеточная оболочка выполняет ряд важнейших функций:

1 – поддерживает форму тела;

2 – защищает клетку от внешних воздействий;

3 – участвует в обмене веществ клетки, ᴛ.ᴇ. пропускает питательные вещества и выделяет продукты жизнедеятельности;

4 – участвует в передвижении клетки. Бактерии, лишенные клеточной оболочки теряют подвижность;

5 – участвуют в образовании капсулы.

Классификация бактерий по форме. - понятие и виды. Классификация и особенности категории "Классификация бактерий по форме." 2017, 2018.

По новой системе различают три домена: «Bacteria» (эубак- терии), «Archaea» (архебактерии) и «Еисагуа»(эукариоты). Домены включают типы, классы, порядки, семейства, роды, виды.
Бактерии являются прокариотами (у прокариотической клетки ядро, называемое нуклеоидом, не имеет ядерной оболочки, ядрышка и гистонов, а цитоплазма не содержит высокоорганизованных органелл).

К толстостенным, грамположительным бактериям относят: сферические формы, или кокки (стафилококки, стрептококки , пневмококки); палочковидные формы, в том числе коринебактерии , микобактерии и бифидобактерии ; актино- мицеты (ветвящиеся, нитевидные бактерии).
Сферические формы, или кокки - шаровидные бактерии размером 0,5-1,0 мкм; по взаимному расположению клеток различают микрококки, диплококки, стрептококки , тетракокки, сарцины и стафилококки. Микрококки (греч. mikros - малый)
- отдельно расположенные клетки или в виде «пакетов».

Диплококки (от греч. diploos - двойной), или парные кокки, располагаются парами (пневмококк, гонококк , менингококк), так как клетки после деления не расходятся. Пневмококк имеет с противоположных сторон ланцетовидную форму, а гонококк и менингококк имеют форму кофейных зерен, обращенных вогнутой поверхностью друг к другу. Стрептококки (от греч. streptos - цепочка) - клетки округлой или вытянутой формы, составляющие цепочку вследствие деления клеток в одной плоскости и сохранения связи между ними в месте деления. Сарцины (от лат. sarcina - связка, тюк) располагаются в виде «пакетов» из 8 и более кокков, так как они образуются при делении клетки в трех взаимно перпендикулярных плоскостях. Стафилококки (от греч. staphyle - виноградная гроздь) - кокки, расположенные в виде грозди винограда в результате деления в разных плоскостях.

Палочковидные бактерии различаются по размерам, форме концов клетки и взаимному расположению клеток. Длина клеток варьирует от 1,0 до 8,0 мкм, толщина - от 0,5 до 2,0 мкм. Палочки могут быть правильной (кишечная палочка и др.) и неправильной (коринебактерии и др.,) формы, в том числе ветвящиеся, например у актиномицетов . Слегка изогнутые палочки называются вибрионами (холерный вибрион). Большинство палочковидных бактерий располагается беспорядочно, так как после деления клетки расходятся. Если после деления клетки остаются связанными общими фрагментами клеточной стенки и не расходятся, то они располагаются под углом друг к другу (коринебактерии дифтерии) или образуют цепочку (сибиреязвенная бацилла).

Рис . 3.1. Мазок из Escherichia coli и Staphylococcus aureus. Окраска по Г раму

В старом Руководстве Берджи по систематической бактериологии бактерии делили по особенностям клеточной стенки бактерий на 4 отдела: Gracilicutes - эубактерии с тонкой клеточной стенкой, грамотрицательные; Firmicutes - эубактерии с толстой клеточной стенкой, грамположительные; Tenericutes - эубактерии без клеточной стенки; Mendosicutes - архебактерии с дефектной клеточной стенкой. Каждый отдел был разделен на секции, или группы, по окраске по Граму, форме клеток, потребности в кислороде, подвижности, особенностям метаболизма и питания.
Таблица 3.1. Согласно 2-му изданию (2001 г) Руководства Берджи бактерии делят на два домена: « Bacteria » и « Archaea »

Домен «Bacteria» (эубактерии)

Домен «Archaea» (архебактерии)

В домене « Bacteria » можно выделить следующие бактерии:
- бактерии с тонкой клеточной стенкой, грамотрицательные";
- бактерии с толстой клеточной стенкой, грамположительные”;
- бактерии без клеточной стенки (класс Mollicutes - микоплазмы)

Архебактерии не содержат пептидогликан в клеточной стенке. Имеют особые рибосомы и рибосомные РНК (рРНК). Термин «архебактерии» появился в 1977 г. Это одна из древних форм жизни, что и означает приставка «архе». Среди них нет возбудителей инфекционных болезней.

‘ Большинство грамотрицательных бактерий объединены в тип протеобактерии, основанный на сходстве по рибосомной РНК («Proteobacteria» - от греческого бога Протеуса, принимавшего разнообразные формы). Они появились от общего фотосинтетического предка.
” Грамположительные бактерии, согласно изученным последовательностям рибосомной РНК, являются отдельной филогенетической группой с двумя большими подотделами - с высоким и низким соотношением G+C (генетическое сходство). Как и протеобактерии, эта группа метаболически разнообразная.

В домен « Bacteria » входят 22 типа, из которых медицинское значение имеют следующие (по Берджи, 2001):
Тип В IV. Deinococcus-Thermus Класс I. Deinococci
Порядок I. Deinococcales Семейство I. Deinococcaceae Род1. Deinococcus

Тип В XII. Proteobacteria

Класс I. Alphaproteobacteria Порядок II. Rickettsiales Семейство I. Rickettsiaceae Род I. Rickettsia Род И. Orientia Род III. Wolbachia Семейство И. Ehrlichiaceae (б родов) Род I. Ehrlichia Род И. Aegyptianella Семейство III. Holosporaceae (8 родов) Порядок VI. Rhizobiales Семейство И. Bartonellaceae Род I. Bartonella Семейство III. Brucellaceae Род I. Brucella

Класс II. Betaproteobacteria Порядок I. Burkholderiales Семейство I. Burkholderiaceae Род I. Burkholderia Семейство IV. Alcaligenaceae Род I. Alcaligenes Род III.Bordetella Порядок IV. Neisseriales Семейство I. Neisseriaceae Род I. Neisseria Род VI.Eikenella Род IX.Kingella Порядок V. Nitrozomonadales Семейство II. Spirillaceae Род I. Spirillum

Класс III. Gammaproteobacteria Порядок V. Thiotrichales Семейство III. Francisellaceae Род I. Francisella Порядок VI. Legionellales Семейство I. Legionellaceae Род I. Legionella Семейство II. Coxiellaceae Род I. Coxiella Порядок IX. Pseudomonadales Семейство I. Pseudomonadaceae Род I. Pseudomonas Семейство И. Moraxellaceae Род I. Moraxella Род И. Acinetobacter Порядок XI. Vibrionales Семейство I. Vibrionaceae Род I. Vibrio Порядок XII. Aeromonadales Семейство I. Aeromonadaceae Род I. Aeromonas Порядок XIII. Enterobacteriales Семейство I. Enterobacteriaceae Род I. Enterobacter Род VIII. Calymmatobacterium Род X. Citrobacter Род XI. Edwardsiella Род XII. Erwinia Род XIII Escherichia Род XV. Hafnia
Род XVI. Klebsiella Род XVII. Kluyvera Род XXI. Morganella Род XXVI. Plesiomonas Род XXVIII. Proteus Род XXIX. Providencia РодХХХИ. Salmonella Род XXXIII. Serratia Род XXXIV. Shigella Род XL. Yersinia Порядок IV. Pasteurellales Семейство I. Pasteurellaceae Род I. Pasteurella Род И. Actinobacillus Род III. Haemophilus

Класс IV. Deltaproteobacteria Порядок II. Desulfovibrionales Семейство I. Desulfovibrionaceae Род II. Bilophila

Класс V . Epsilonproteobacteria Порядок I. Campylobacteriales Семейство I. Campylobacteriaceae Род I. Campylobacter Семейство II. Helicobacteriaceae Род I. Helicobacter Род Il.Wolinella

Тип В XIII. Firmicutes (главным образом грамположительные )

Класс I . Clostridia Порядок I. Clostridiales Семейство I. Clostridiaiaceae Род I. Clostridium Род IX. Sarcina Семейство III. Peptostreptococcaceae Род I. Peptostreptococcus Семейство IV. Eubacteriaceae Род I. Eubacterium Семейство V. Peptococcaceae Род I. Peptococcus Семейство VII. Acidaminococcaceae Род XIV. Veillonella Класс II. Mollicutes Порядок I. Mycoplasmatales Семейство I. Mycoplasmataceae Род I. Mycoplasma Род IV. Ureaplasma Класс III. Bacilli Порядок I. Bacillalles Семейство I. Bacillaceae Род I. Bacillus Семейство И. Planococcaceae Род I. Planococcus Род IV.Sporosarcina Семейство IV. Listeriaceae Род I. Listeria Семейство V. Staphylococcaceae Род I. Staphylococcus Род II. Gemella Порядок И. Lactobacillales Семейство I. Lactobacillaceae Род I. Lactobacillus Род III. Pediococcus Семейство II. Аегососсасеае Род I. Aerococcus Семейство IV. Enterococcaceae Род I. Enterococcus
Семейство V. Leuconostocaceae Род I. Leuconostoc Семейство VI. Streptococcaceae Род I. Streptococcus Род II. Lactococcus Тип В XIV. Actinobacteria Класс I. Actinobacteria Подкласс V. Actinobacteridae Порядок I. Actinomycetales Подпорядок V. Actinomycineae Семейство I. Actinomycetaceae Род I. Actinomyces Род И. Actinobacilum Род III. Arcanodacterium Род IV. Mobiluncus Подпорядок VI. Micrococcineae Семейство I. Micrococcaceae Род I. Micrococcus Род VI. Rothia Род VII. Stomatococcus Подпорядок VII. Corynebacterineae Семейство I. Corynebacteriaceae Род I. Corynebacterium Семейство I. Mycobacteriaceae Род IV. Mycobacterium Семейство V. Nocardiaceae Род I. Nocardia Род И. Rhodococcus Подпорядок VII. Propionibacterineae Семейство I. Propionibacteriaceae Род I. Propionibacterium Семейство И. Nocardiaceae Род I. Nocardioides Порядок II. Bifidobacteriales
Семейство I. Bifidobacteriaceae Род I. Bifidobacterium Род III. Gardnerella Тип В XVI. Chlamydiae Класс I. Chlamydiae Порядок I. Chlamydiales Семейство I. Chlamydiaceae Род I. Chlamydia Род II. Chlamydophila Тип В XVII. Spirochaetes Класс I. Spirochaetes Порядок I. Spirochaetales Семейство I. Spirochaetaceae Род I. Spirochaeta Род И. Borrelia Род IX. Treponema Семейство III. Leptospiraceae Род И. Leptospira Тип В XX. Bacteroidetes Класс I. Bacteroidetes Порядок I. Bacteroidales Семейство I. Bacteroidaceae Род I. Bacteroides Семейство III. Porphyromonadaceae Род I. Porphyromonas Семейство IV. Prevotellaceae Род I. Prevotella Класс II. Flavobacteria Порядок I. Flavobacteriales Семейство I. Flavobacteriaceae Род I. Flavobacterium


*Расположение спор: 1 - центральное, 2 - субтерминальное, 3 - терминальное.
Рис. 3.2.

Хламидии относятся к облигатным внутриклеточным кокковидным грамотрицательным (иногда грамвариабельным) бактериям. Они размножаются только в живых клетках. Вне клеток хламидии имеют сферическую форму (0,3 мкм), метаболически неактивны и называются элементарными тельцами. В клеточной стенке элементарных телец имеется главный белок наружной мембраны и белок, содержащий большое количество цистеина. Элементарные тельца попадают в эпителиальную клетку путем эндоцитоза с формированием внутриклеточной вакуоли. Внутри клеток они увеличиваются и превращаются в делящиеся ретикулярные тельца, образуя скопления в вакуолях (включения). Из ретикулярных телец образуются элементарные тельца, которые выходят из клеток путем экзоцитоза или лизиса клетки. Вышедшие из клетки элементарные тельца вступают в новый цикл, инфицируя другие клетки. У человека хламидии вызывают поражения глаз, урогенитального тракта, легких и др.

Микоплазмы - мелкие бактерии (0,15-1,0 мкм), окруженные цитоплазматической мембраной и не имеющие клеточной стенки. Из-за отсутствия клеточной стенки микоплазмы осмотически чувствительны. Имеют разнообразную форму: кокковидную, нитевидную, колбовидную; похожи на L-формы (рис. 3.6). Эти формы видны при фазово-контрастной микроскопии чистых культур микоплазм. Патогенные микоплазмы вызывают хронические инфекции - микоплазмозы.

Актиномицеты - ветвящиеся, нитевидные или палочковидные грамположительные бактерии. Свое название (от греч. actis - луч, mykes - гриб) они получили в связи с образованием в пораженных тканях друз - гранул из плотно переплетенных нитей в виде лучей, отходящих от центра и заканчивающихся колбовидными утолщениями. Актиномицеты могут делиться путем фрагментации мицелия на клетки, похожие на палочковидные и кокковидные бактерии. На воздушных гифах актиномицетов могут образовываться споры, служащие для размножения. Споры актиномицетов обычно нетермостойки.

Участок прикрепления (аналог блефаропласта)
Рис. 3.3. Электронограмма фрагмента клетки Treponema pallidum (негативное контрастирование). По Н. М. Овчинникову, В. В. Делекторскому

Общую филогенетическую ветвь с актиномицетами образуют так называемые нокардиоподобные (нокардиоформные) актиномицеты - собирательная группа палочковидных, неправильной формы бактерий. Их отдельные представители образуют ветвящиеся формы. К ним относят бактерии родов Corynebacterium , Mycobacterium , Nocardia и др. Нокардиоподобные актиномицеты отличаются наличием в клеточной стенке сахаров арабинозы, галактозы, а также миколовых кислот и больших количеств жирных кислот. Миколовые кислоты и липиды клеточных стенок обусловливают кислотоустойчивость бактерий, в частности, микобактерий туберкулеза и лепры (при окраске по Цилю-Нильсену они имеют красный цвет, а некислотоустойчивые бактерии и элементы ткани, мокроты - синий цвет).
Извитые формы - спиралевидные бактерии, например спириллы, имеющие вид штопорообразно извитых клеток. К патогенным спириллам относится возбудитель содоку (болезнь укуса крыс). К извитым также относятся кампилобак- теры, хеликобактеры, имеющие изгибы как у крыла летящей чайки; близки к ним и такие бактерии, как спирохеты. Спирохеты - тонкие, длинные, извитые (спиралевидной формы) бактерии, отличающиеся от спирилл подвижностью, обусловленной сгибательными изменениями клеток. Спирохеты имеют наружную мембрану клеточной стенки, окружающую протоплазматический цилиндр с цитоплазматической мембраной. Под наружной мембраной клеточной стенки (в периплазме) расположены периплазматические фибриллы (жгутики), которые, как бы закручиваясь вокруг протоплазмати- ческого цилиндра спирохеты, придают ей винтообразную форму (первичные завитки спирохет). Фибриллы прикреплены к концам клетки (рис. 3.3) и направлены навстречу друг другу. Другой конец фибрилл свободен. Число и расположение фибрилл варьируют у разных видов. Фибриллы участвуют в передвижении спирохет, придавая клеткам вращательное, сгибательное и поступательное движение. При этом спирохеты образуют петли, завитки, изгибы, которые названы вторичными завитками.

Спирохеты плохо воспринимают красители. Их окрашивают по методу Романовского-Гимзы или серебрением, а в живом виде исследуют с помощью фазово-контрастной или темнопольной микроскопии. Спирохеты представлены 3 родами, патогенными для человека: Treponema , Borrelia , Leptospira .

Трепонемы (род Treponema) имеют вид тонких штопорообразно закрученных нитей с 8-12 равномерными мелкими завитками. Вокруг протопласта трепонем расположены фибриллы. Патогенными представителями являются Т.pallidum - возбудитель сифилиса, T . pertenue - возбудитель тропической болезни - фрамбезии.

Боррелии (род Borrelia) более длинные, имеют по 3-8 крупных завитков и 8-20 фибрилл. К ним относится возбудитель возвратного тифа (B . recurrentis ) и возбудители болезни Лайма (В. burgdorferi и др.).

Лептоспиры (род Leptospira) имеют завитки неглубокие и частые - в виде закрученной веревки. Концы этих спирохет изогнуты наподобие крючков с утолщениями на концах. Образуя вторичные завитки, они приобретают вид букв «S» или «С»; имеют 2 осевые нити. Патогенный представитель L

В бактериальной клетке отсутствует ядро, хромосомы свободно располагаются в цитоплазме. Кроме того, в клетке бактерии отсутствуют мембранные органоиды: митохондрии, ЭПС, аппарат Гольджи и пр. Снаружи клеточная мембрана покрыта клеточной стенкой.

Большинство бактерий передвигаются пассивно, с помощью водных или воздушных течений. Только некоторые из них имеют органеллы движения – жгутики. Жгутики прокариот очень просты по устройству и состоят из белка флагеллина, образующего полый цилиндр диаметром 10–20 нм. Они ввинчиваются в среду, продвигая клетку вперёд. По-видимому, это единственная известная в природе структура, использующая принцип колеса.

По своей форме бактерии делятся на несколько групп:

Кокки (имеют округлую форму);
- бациллы (имеют палочковидную форму);
- спириллы (имеют форму спирали);
- вибрионы (имеют форму запятой).

По способу дыхания бактерии делятся на аэробов (большинство бактерий) и анаэробов (возбудители столбняка, ботулизма, газовой гангрены). Первым для дыхания нужен кислород, для вторых кислород бесполезен или даже ядовит.



Структура прокариотической клетки. Клетка прокариот устроена значительно проще клеток животных и растений. Снаружи она покрыта клеточной стенкой, выполняющей защитные, формирующие и транспортные функции. Жёсткость клеточной стенки обеспечивает муреин. Иногда бактериальная клетка покрыта сверху капсулой или слизистым слоем.

Протоплазма бактерий, как и у эукариот, окружена плазматической мембраной. В мешковидных, трубчатых или пластинчатых впячиваниях мембраны находятся мезосомы, участвующие в процессе дыхания, бактериохлорофилл и другие пигменты.

Генетический материал прокариот не образует ядра, а находится непосредственно в цитоплазме. ДНК бактерий – одиночные кольцевые молекулы, каждая из которых состоит из тысяч и миллионов пар нуклеотидов. Геном бактериальной клетки намного проше, чем у клеток более развитых существ: в среднем ДНК бактерий содержит несколько тысяч генов.

В прокариотических клетках отсутствует эндоплазматическая сеть, а рибосомы свободно плавают в цитоплазме. Нет у прокариот и митохондрий; частично их функции выполняет клеточная мембрана.

Подвижность бактерий обеспечивается жгутиками. Бактерии размножаются путем деления примерно каждые 20 минут (в благоприятных условиях). ДНК реплицируется, каждая дочерняя клетка получает по своей копии родительской ДНК. Возможна также передача ДНК между неделящимися клетками (посредством захвата «голой» ДНК, при помощи бактериофагов или путём конъюгации, когда бактерии соединяются между собой копуляционнымифимбриями), однако увеличения количества особей при этом не происходит. Размножению препятствуют солнечные лучи и продукты их собственной жизнедеятельности.

Поведение бактерий не отличается особой сложностью. Химические рецепторы регистрируют изменения кислотности среды и концентрацию различных веществ: сахаров, аминокислот, кислорода. Многие бактерии реагируют на изменения температуры или освещенности, некоторые бактерии могут чувствовать магнитное поле Земли. При неблагоприятных условиях бактерия покрывается плотной оболочкой, цитоплазма обезвоживается, жизнедеятельность почти прекращается. В таком состоянии споры бактерии могут часами находиться в глубоком вакууме, переносить температуру от –240 °С до +100 °С.

Питание бактерий.

Питание.

Пассивная диффузия

Облегчённая диффузия

Активный транспорт

В первом случае молекула питательного вещества образует комплекс с белком периплазматического пространства, который взаимодействует со специфической пермеазой цитоплазматической мембраны. После энергозависимого проникновения через цитоплазматическую мембрану комплекс «субстрат – белок периплазмы – пермеаза» диссоциирует с освобождением молекулы субстрата.

При активном транспорте с химической модификацией переносимого вещества цепь событий включает: (1) фосфорилирование мембранного фермента-2 со стороны цитоплазмы фосфоенолпируватом; (2) связывание на поверхности цитоплазматической мембраны фосфорилированным ферментом-2 молекулы субстрата; (3) энергозависимый транспорт молекулы субстрата в цитоплазму; (4) перенос фосфатной группы на молекулу субстрата; (5) диссоциация комплекса «субстрат – фермент» в цитоплазме. За счёт фосфорилирования молекулы субстрата аккумулируются в цитоплазме клеток и не способны выйти из них.

Классификация бактерий по типу питания.

По способу поступления питательных веществ бактерии подразделяются на голофиты и голозои . Бактерии-голофиты (от греч. holos – полноценный и phyticos – относящийся к растениям) неспособны выделять в окружающую среду ферменты, расщепляющие субстраты, вследствие чего потребляют питательные вещества исключительно в растворённом, молекулярном виде. Бактерии-голозои (от греч. holos – полноценный и zoikos – относящийся к животным), напротив, имеют комплекс экзоферментов, которые обеспечивают внешнее питание – расщепление субстратов до молекул вне бактериальной клетки. После этого молекулы питательных веществ поступают внутрь бактерий-голозоев.

По источнику углерода среди бактерий выделяют автотрофы и гетеротрофы . Автотрофы (от греч. autos – сам, trophe – пища) в качестве источника углерода используют углекислый газ (СО 2), из которого синтезируют все углеродсодержащие вещества. Для гетеротрофов (от греч. geteros – другой и trophe – пища) источником углерода являются различные органические вещества в молекулярной форме (углеводы, многоатомные спирты, аминокислоты, жирные кислоты). Наибольшая степень гетеротрофности присуща прокариотам, которые могут жить только внутри других живых клеток (например, риккетсии и хламидии).

По источнику азота прокариоты подразделяются на 3 группы: 1) азотфиксирующие бактерии (усваивают молекулярный азот из атмосферного воздуха); 2) бактерии, потребляющие неорганический азот из солей аммония, нитритов или нитратов; 3) бактерии, которые ассимилируют азот, содержащийся в органических соединениях (аминокислоты, пурины, пиримидины и др.).

По источнику энергии бактерии делят на фототрофы и хемотрофы . Бактерии-фототрофы , как и растения, способны использовать солнечную энергию. Фототрофные прокариоты заболеваний у человека не вызывают. Бактерии-хемотрофы получают энергию при окислительно-восстановительных реакциях.

По природе доноров электронов литотрофы (от греч. litos – камень) и органотрофы . У литотрофов (хемолитотрофов ) в качестве доноров электронов выступают неорганические вещества (Н 2 , Н 2 S, NH 3 , сера, CO, Fe 2+ и др.). Донорами электронов у органотрофов (хемоорганотрофов ) являются органические соединения – углеводы, аминокислоты и др.

Большинство патогенных для человека бактерий обладает хемоорганотрофным (хемогетеротрофным) типом питания; реже встречается хемолитотрофный (хемоавтотрофный) тип.

По способности синтезировать органические соединения бактерии-хемотрофы подразделяются на прототрофы, ауксотрофы и гипотрофы . Бактерии-прототрофы синтезируют из глюкозы и солей аммония все необходимые органические вещества. Бактерии называются ауксотрофами , если они неспособны синтезировать какое-либо органическое вещество из указанных соединений. Крайняя степень утраты метаболической активности называется гипотрофией. Гипотрофные бактерии обеспечивают свою жизнедеятельность, реорганизуя структуры или метаболиты хозяина.

Кроме углерода и азота, для полноценной жизнедеятельности бактериям необходимы сера, фосфор, ионы металлов. Источниками серы являются аминокислоты (цистеин, метионин), витамины, кофакторы (биотин, липоевая кислота и др.), сульфаты. Источниками фосфора служат нуклеиновые кислоты, фосфолипиды, фосфаты. В достаточно высоких концентрациях бактериям нужны магний, калий, кальций, железо; в значительно меньших – цинк, марганец, натрий, молибден, медь, никель, кобальт.

Факторы роста – это вещества, которые бактерии самостоятельно синтезировать не могут, но крайне в них нуждаются. В качестве факторов роста могут выступать аминокислоты, азотистые основания, витамины, жирные кислоты, железопорфирины и другие соединения. Для создания оптимальных условий жизнедеятельности бактерий факторы роста должны быть добавлены в питательные среды.

Метаболизм, превращение энергии

А) Конструктивный метаболизм.

Обязательной фазой питания бактерий является усвоение питательных веществ, то есть включение их в изменённом или модифицированном виде в синтетические реакции по воспроизведению клеточных компонентов и структур.

Белковый обмен у бактерий может протекать в 3 фазы: первичный распад белка, вторичный распад и синтез белка. Первичный распад белковых молекул до пептонов осуществляют экзоферменты – экзопротеазы, выделяемые бактериями в окружающую среду. Вторичный распад происходит под действием эндоферментов (эндопротеаз), которые имеют все бактерии. Этот процесс протекает внутри бактериальной клетки и заключается в расщеплении пептидов до составляющих их аминокислот. Последние могут быть использованы в неизменённом виде или быть подвергнуты химическим преобразованиям (дезаминирование, декарбоксилирование и др.), в результате которых появляются аммиак, индол, сероводород, кетокислоты, спирт, углекислый газ и др. Обнаружение указанных соединений имеет в бактериологии диагностическое значение.

Наряду с реакциями расщепления белков, происходят реакции их синтеза. Одни бактерии образуют белки из готовых аминокислот, полученных в результате внешнего питания, другие бактерии самостоятельно синтезируют аминокислоты из простых соединений, содержащих азот и углерод. Синтез аминокислот может осуществляться в реакциях аминирования, переаминирования, амидирования, карбоксилирования. Большинство прокариот способны синтезировать все аминокислоты, входящие в состав клеточных белков. Особенностью биосинтеза аминокислот является использование общих биосинтетических путей: цикл трикарбоновых кислот, гликолиз, окислительный пентозо-фосфатный путь и др. Основным исходным соединением для синтеза аминокислот является пируват и фумарат.

Углеводный обмен у автотрофов и гетеротрофов имеет отличия (схема 1). Бактерии-автотрофы все необходимые углеводы синтезируют из углекислого газа. Сырьём для образования углеводов у бактерий-гетеротрофов могут служить: (1) одно-, двух- и трёхуглеродные соединения; и (2) полисахариды (крахмал, гликоген, целлюлоза). Для расщепления последних многие бактерии-гетеротрофы имеют экзоферменты (амилаза, пектиназа и др.), которые проводят гидролиз полисахаридов до образования глюкозы, мальтозы, фруктозы и пр.


У бактерий-автотрофов в цикле Кальвина из углекислого газа образуется рибулозофосфат-фосфорно-глицериновая кислота, которая включается в реакции гликолиза, идущие в обратном направлении. Конечным продуктом обратного синтеза является глюкоза.

Бактерии-гетеротрофы образуют глюкозу из одно-, двух- и трёхуглеродных соединений, также включая их в реакции обратного гликолиза. Ввиду того, что некоторые реакции гликолиза необратимы, у гетеротрофов сформировались специальные ферментативные реакции, позволяющие обходить необратимые реакции катаболического пути.

При расщеплении бактериями-гетеротрофами полисахаридов образующиеся дисахариды поступают внутрь клеток и под влиянием мальтозы, сахарозы, лактозы подвергаются гидролизу и распаду на моносахара, которые затем сбраживаются либо включаются в реакции взаимопревращения сахаров.

Липидный обмен . Исходными материалами для образования липидов у бактерий могут служить как экзогенные липиды, так и амфиболиты межуточного обмена. Экзогенные липиды подвергаются действию бактериальных липаз и других липолитических ферментов. Многие виды бактерий усваивают глицерин, который служит источником пластического материала и энергии. Эндогенными источниками для синтеза липидов могут быть ацетилкоэнзим А, пропионил-АПБ, малонил-АПБ (АПБ – ацетилпереносящий белок), фосфодиоксиацетон и др.

Исходным субстратом для синтеза жирных кислот с чётным числом углеродных атомов служит ацетилкоэнзим А, для жирных кислот с нечётным числом углеродных атомов – пропионил-АПБ и малонил-АПБ. Образование двойных связей в молекуле кислоты у аэробных прокариот происходит при участии молекулярного кислорода и фермента десатуразы. У анаэробных прокариот двойные связи вводятся на ранних этапах синтеза в результате реакции дегидратации. Исходным субстратом для синтеза фосфолипидов служит фосфодиоксиацетон (промежуточное соединение гликолитического пути), восстановление которого приводит к образованию 3-фосфороглицерина. К последнему затем присоединяются 2 остатка жирных кислот в виде комплекса с АПБ. Продуктом реакции является фосфатидная кислота, активирование которой с помощью ЦТФ и последующее присоединение к фосфатной группе серина, инозита, глицерина или другого соединения приводят к синтезу соответствующих фосфолипидов.

Ауксотрофные и гипотрофные по жирным кислотам микроорганизмы (например, микоплазмы) получают их в готовом виде из клеток хозяина или питательной среды.

Мононуклеотидный обмен . Пуриновые и пиримидиновые мононуклеотиды являются важнейшими компонентами ДНК и РНК. Многие прокариоты способны как использовать содержащиеся в питательной среде готовые пуриновые и пиримидиновые основания, их нуклеозиды и нуклеотиды, так и синтезировать их из низкомолекулярных веществ. Бактерии располагают ферментами, катализирующими следующие этапы взаимопревращений экзогенных пуриновых и пиримидиновых производных: азотистое основание – нуклеозид – нуклеотид (моно- – ди- – трифосфат).

Синтез пуриновых и пиримидиновых мононуклеотидов de novo осуществляется независимыми путями. При синтезе пуриновых нуклеотидов в результате последовательных ферментативных реакций образуется инозиновая кислота, из которой путём химических модификаций пуринового кольца синтезируются адениловая (АМФ) и гуаниловая (ГМФ) кислоты. Синтез пиримидиновых нуклеотидов начинается с образования оротидиловой кислоты, декарбоксилирование которой даёт уридиловую кислоту (УМФ). Из последней образуется УТФ, ацилирование которого приводит к возникновению ЦТФ.

Дезоксирибонуклеотиды образуются в результате восстановления соответствующих рибонуклеотидов на уровне дифосфатов или трифосфатов. Синтез специфического для ДНК нуклеотида – тимидиловой кислоты происходит путём ферментативного метилирования дезоксиуридиловой кислоты.

Ионный обмен . Минеральные соединения – ионы, NH 3 + , К + , Mg 2+ , Fe 2+ , SO 4 2- , PO 4 3- и другие бактерии получают из окружающей среды как в свободном, так и в связанном с другими органическими веществами состоянии. Катионы и анионы транспортируются в бактериальную клетку различными способами, описанными в § 3. На скорость проникновения ионов в бактериальную клетку влияют рН среды и физиологическая активность самих микроорганизмов.

Б) Дыхание бактерий (энергетический метаболизм).

Все процессы жизнедеятельности энергозависимы, поэтому добывание энергии является крайне важной стороной метаболизма прокариот. Они получают энергию при анаэробном и аэробном дыхании.

Дыхание , или биологическое окисление – это катаболический процесс переноса электронов от вещества-донора на вещество-акцептор, сопровождающийся накоплением энергии в макроэргических соединениях . Дыхание осуществляется в процессе катаболических реакций, в результате которых сложные органические вещества, расщепляясь, отдают энергию и превращаются в простые соединения. Аккумулированная в макроэргических веществах (АТФ, ГТФ, УТФ и др.) энергия используется в анаболических реакциях.

По способу дыхания микроорганизмы подразделяются на облигатные (строгие) аэробы, облигатные анаэробы и факультативные анаэробы .

Облигатные аэробы нуждаются в свободном кислороде. Донорами электронов у патогенных для человека аэробов-хемоорганотрофов являются органические соединения (углеводы, жиры, белки), акцептором электронов – молекулярный кислород. Запасание энергии в виде АТФ у аэробов-хемоорганотрофов происходит при окислительном фосфорилировании доноров электронов. Аэробы обладают цитохромами (участвуют в переносе электронов), а также ферментами (каталаза, супероксиддисмутаза, пероксидаза), инактивирующими токсические кислородные радикалы, образующиеся при дыхании. Супероксиддисмутаза инактивирует наиболее токсичный метаболит – супероксидрадикал в Н 2 О 2 . Фермент каталаза превращает Н 2 О 2 в Н 2 О и О 2 .

Особую группу аэробов составляют микроаэрофильные бактерии , которые хотя и нуждаются в кислороде для получения энергии, лучше растут при повышенном содержании СО 2 , например, бактерии родов Campylobacter и Helicobacter .

Облигатные анаэробы не нуждаются в свободном кислороде, напротив, даже в малых количествах кислород оказывает на них токсическое действие. Донорами электронов у патогенных для человека анаэробов-хемоорганотрофов служат различные органические соединения (преимущественно углеводы). Акцептором электронов у анаэробов-хемоорганотрофов являются органические кислородсодержащие соединения – кислоты или кетоны, то есть акцептор электрона - связанный с органическим фрагментом кислород. Запасание энергии у этих прокариот происходит при субстратном фосфорилировании. Облигатные анаэробы, как правило, не имеют цитохромов и ферментов, инактивирующих кислородные радикалы (каталазо- и супероксидисмутазоотрицательны).

У непатогенных для человека анаэробов хемолитотрофов акцептором электронов являются неорганические кислородсодержащие соединения – нитраты, сульфаты, карбонаты.

Особую группу анаэробов составляют аэротолерантные бактерии, которые способны расти в присутствии атмосферного кислорода, но не используют его в качестве акцептора электронов (например, молочнокислые бактерии). Аэротолерантные прокариоты каталазо- и супероксиддисмутазопозитивны.

Факультативные анаэробы способны существовать как в кислородной, так и в бескислородной средах. Донорами электронов у них являются органические вещества; акцепторами электронов, в зависимости от условий среды – молекулярный или связанный в органических и неорганических соединениях кислород. Энергия факультативными анаэробами может аккумулироваться как при окислительном, так и при субстратном фосфорилировании. Как и аэробы, данная группа бактерий имеет цитохромы и ферменты антиоксидантной защиты.

Основным субстратом для получения энергии являются углеводы, которые у разных по типу дыхания хемогетеротрофных прокариот могут катаболизироваться до ацетилкоэнзима А («активированная уксусная кислота»). В качестве энергетических субстратов могут выступать липиды и белки, поскольку ацетилкоэнзим А также является одним из промежуточных продуктов их метаболизма (схема 2).

Катаболизм углеводов у хемоорганотрофных прокариот включает: (а) анаэробные процессы – гликолиз, пентозофосфатный путь и кетодезоксифосфоглюконатный путь; (б) аэробный процесс – цикл трикарбоновых кислот (цикл Кребса). Анаэробные процессы имеют место у всех прокариот, тогда как аэробный процесс характерен только для облигатных аэробов и факультативных анаэробов. В основе получения энергии анаэробными путями лежит субстратное фосфорилирование, в основе аэробного процесса – окислительное фосфорилирование.

Определение понятий.

Стерилизация, дезинфекция и антисептика являются неотъемлемыми частями современной медицинской и в особенности хирургической практики. Понимание принципов и практического применения этих методов необходимо, поскольку многие потенциально патогенные микроорганизмы способны оставаться жизнеспособными вне макроорганизма в течение длительного времени, проявлять высокую устойчивость к действию физических и химических дезинфектантов и относительно легко передаваться от одного человека к другому.

Антисептика - уничтожение или предотвращение роста патогенных или условно-патогенных микроорганизмов химическими методами. Этот термин обычно используют для обозначения наружного нанесения химического препарата на живые ткани.

Антисептик - вещество, которое угнетает рост или разрушает микроорганизм (без действия на споры бактерий). Термин является специфическим для обозначения веществ, которые используются для местного действия на живые ткани.

Асептика означает отсутствие сепсиса, но вообще этот термин используют для того, чтобы подчеркнуть отсутствие любых живых организмов. Асептические методы означают любую процедуру, предназначенную для элиминации живых организмов и предотвращения повторной контаминации ними. Современные хирургические и микробиологические методы основаны на асептических процедурах.

Биоцид - вещество, которое убивает все живые микроорганизмы, как патогенные, так и непатогенные, включая споры.

Биостат - агент, который предотвращает рост микроорганизмов, но необязательно убивает их.

Деконтаминация - удаление микроорганизмов без количественного определения. Этот термин является относительным; окончательное удаление микробов может быть осуществлено стерилизацией или дезинфекцией.

Дезинфекция - процесс, который уменьшает количество или полностью уничтожает все патогенные микроорганизмы, кроме спор.

Гермицид - вещество, которое разрушает микроорганизмы, особенно патогенные. Гермицид не разрушает споры.

Санация - метод, благодаря которому микробная контаминация уменьшается до “безопасного” уровня. Этот метод ранее использовали для “очищения” неживых объектов.

Стерилизация - использование физических факторов и (или) химических веществ для полного уничтожения или разрушения всех форм микробной жизни.

Стерилизация.

Стерилизацию определяют как разрушение или удаление (путем фильтрации) всех микроорганизмов и их спор. Стерилизацию обычно проводят с помощью тепла. Стерилизация, будучи одной из повседневных процедур в работе микробиологической лаборатории, является необходимым методом, обеспечивающим такую обработку, при которой культуры, оборудование, посуда и среды способствуют росту только необходимых микроорганизмов, тогда как другие микробы разрушаются. Различают такие виды стерилизации: прокаливание в пламени горелки, кипячение, действие текучим паром, паром под давлением в автоклаве, сухим жаром, пастеризация, тиндализация, химическая, холодная (механическая) стерилизация.

Выбор методов стерилизации.

При выборе методов стерилизации нужно учитывать следующие требования:

1. Активность: бактерицидная, спороцидная, туберкулоцидная, фунгицидная и вирусоцидная.

2. Скорость процедуры: стерилизация должна проводиться как можно более быстро.

3. Проницаемость: вещества-стерилизаторы должны проникать через упаковку и к внутренним частям инструментария.

4. Совместимость: не должны возникать изменения структуры или функции материалов, которые стерилизуют несколько раз.

5. Нетоксичность: не должно возникать угрозы для здоровья человека и состояния окружающей среды.

6. Устойчивость органического материала: эффективность стерилизации не должна снижаться в присутствия органического материала.

7. Приспособляемость: возможность использовать для больших и малых объёмов стерилизуемого материала.

8. Контроль в течение времени: цикл обработки должен легко и точно контролироваться.

9. Цена: разумная стоимость оснащения, установки и эксплуатации.

Физические стерилизаторы

Влажное тепло, которое образуется в процессе парового автоклавирования, является основным стерилизующим агентом, используемым в лабораториях клинической микробиологии. Автоклавы используют для стерилизации питательных сред, жароустойчивых материалов и обработки инфицированных отходов. Паровой стерилизатор, или автоклав, представляет собой изолированную камеру под давлением, которая использует насыщенный пар для создания высоких температур (рис. 1). Воздух удаляют из камеры замещением по массе или созданием вакуума. Наиболее часто используют автоклавы с замещением по массе. Более лёгкий пар запускают в камеру для вытеснения более тяжёлого воздуха. Кратковременная обработка паром под давлением может уничтожить бактериальные споры. Для рутинной стерилизации питательных сред и других материалов время экспозиции составляет 15 минут при 121ºС и давление - 1,5 кг на 1 квадратный сантиметр. Для инфекционных отходов время экспозиции увеличивается до 30-60 минут. Дополнительно к правильно выбранным времени и температуре, очень важным при стерилизации является прямой контакт с паром. При обработке инфекционного материала следует обеспечить максимальное проникновение пара в отходы. Такой материал необходимо обрабатывать при температуре 132ºС. Не подлежат автоклавированию антинеопластические препараты, токсичные химические вещества и радиоизотопы, которые могут не разрушиться, а также нестабильные химикаты, поскольку они под действием тепла могут испариться и распространиться по камере.

Стерилизация сухим жаром используется для материалов, которые невозможно стерилизовать паром в связи с возможностью повреждения или в связи с непроницаемостью материала для пара. Сухой жар менее эффективен, чем влажное тепло, и требует болеего времени экспозиции и более высоких температур. Стерилизацию сухим жаром обычно проводят в сухожаровом шкафу (рис. 2). Механизм стерилизации с помощью сухого жара является окислительным процессом. Примерами материалов, для которых используют стерилизацию сухим жаром, являются масла, порошки, острые инструменты и стеклянная посуда. Сухой жар или термическую инактивацию-стерилизацию используют как альтернативные методы обработки инфекционных отходов.

Пастеризация разрушает патогенные микроорганизмы путём быстрого нагревания вещества до 71,1ºС на протяжении 15 с, что сопровождается последующим быстрым охлаждением. Пастеризация не является стерилизацией, поскольку не все микроорганизмы чувствительны к ней. Этот метод элиминировал пищевой путь передачи таких заболеваний, как туберкулез пищеварительного тракта и Q-лихорадка.

Тиндализация - это метод стерилизации прерывистым нагреванием, который может использоваться для уничтожения всех бактерий в растворах. Поскольку растущие бактерии легко гибнут при кратковременном кипячении (5 раз в течение 1 часа по 5 минут), всё, что необходимо сделать, это позволить раствору постоять на протяжении определенного времени, прежде чем тепло нарушит созревание спор с существенной потерей их устойчивости к теплу.

Фильтрация - это процесс, который используют для удаления микробов и микроскопических частей из растворов, воздуха и других газов. Наиболее часто стерилизацию путем фильтрации в лаборатории используют для обработки диагностических препаратов, питательных сред, тканевых культуральных сред, сывороток, растворов, которые содержат компоненты сыворотки. Другим общепринятым применением фильтрации является стерилизация воздуха и газов. Пластиковые или бумажные мембранные фильтры, которые различают по диаметру пор (примерно от 12 до 0,22 μм) и используют для механического разделения, служат и для сбора микробов из жидкостей для микроскопического изучения или культивирования прямо на фильтре, когда его помещают на поверхность, пропитанную питательной средой.

Ультрафиолетовое облучение является видом электромагнитной волновой радиации, которая действует на клеточную нуклеиновую кислоту. Микроорганизмы высокочувствительны к действию ультрафиолетовых лучей с длиной волны 254 нм. Ультрафиолет наиболее широко используют для уничтожения микроорганизмов, находящихся в воздухе или на каких-либо поверхностях. Другим применением является холодная стерилизация определенных химикатов и пластика для фармацевтических целей, стерилизация сыворотки для клеточных культур и дезинфекция воды. Существенным недостатком ультрафиолетового облучения в качестве стерилизатора является его неспособность к проникновению внутрь материалов.

Ионизирующее излучение в электромагнитном спектре летально действует на микроорганизмы. Этот спектр включает микроволны, γ-лучи, рентгеновские лучи и поток электронов. Летальный эффект от ионизирующего излучения возникает вследствие прямого действия на молекулу-мишень, в результате чего энергия переносится в молекулу; и вследствие косвенного действия - диффузии радикалов.

Ультразвуковая энергия с низкой частотой инактивирует микроорганизмы в водных растворах. Физический эффект обработки ультразвуком возникает вследствие кавитации. Ультразвуковые очистители и другие приборы часто используют для очистки инструментов, но не считают стерилизаторами. Однако комбинирование ультразвука с химической обработкой убивает микроорганизмы.

Химические стерилизаторы

2 % глютаровый альдегид в качестве жидкого химического стерилизатора ранее широко применяли для обработки медицинского и хирургического материала, который невозможно стерилизовать нагреванием или облучением. Глютаровый альдегид также используют при приготовлении вакцин.

Дезинфекция.

Дезинфекцию можно проводить химическими методами или кипячением. Кипячение является эффективным методом дезинфекции инструментария, например, игл и шприцев, если нет автоклава. Предварительно очищенный медицинский инструментарий следует кипятить 20 минут. Химическую дезинфекцию используют для чувствительного к действию тепла оборудования, которое может повредить высокая температура. Широко используют такие химические дезинфектанты, как компонента хлора, этиловый и изопропиловый спирт, четвертичные компоненты аммония и глютаровый альдегид.

Химические дезинфектанты.

Спирт (этиловый и изопропиловый) , растворённый в воде до концентрации 60-85 %, очень эффективен при дезинфекции. Спирты имеют бактерицидное, фунгицидное и туберкулоцидное действие, но не влияют на споры. Этиловый спирт имеет более широкий спектр вирусоцидной активности, чем изопропиловый, поэтому он более эффективно действует на липофильные и гидрофильные вирусы.

Раствор 37 % формальдеида , который называют формалином, можно использовать в качестве стерилизатора, тогда как его концентрации 3-8 % можно использовать в качестве дезинфектантов.

Фенол в чистом виде не используют в качестве дезинфектанта в связи с его токсичностью, способностью индуцировать развитие опухолей и коррозии. Дериваты фенола, в которых функциональная группа (хлор, бром, алкил, бензил, фенил, амил) замещает один из атомов водорода в ароматическом кольце, широко используют в качестве дезинфектантов. Подобное замещение уменьшает недостатки фенола. Компоненты фенола убивают микробы благодаря инактивации ферментных систем, преципитации белков и нарушению клеточной стенки и мембраны. Обычно используют концентрации 2-5 %, более низкая концентрация требует более длительной экспозиции.

Галогены. Только хлор и йод используют для дезинфекции в лабораторной практике. В связи с тем, что хлор является мощным окислителем, считают, что он убивает микробы путем окисления. Считают, что йод убивает микроорганизмы путём реакции с N-H и S-H группами аминокислот, а также с фенольной группой аминокислоты тирозина и углерод-углеродными двойными связями ненасыщенных жирных кислот. Обычная обработка включает распыление 2-5 % раствора формальдегида в присутствии пара при температуре 60-80ºС.

Антисептика.

Антисептики можно обнаружить в микробиологических лабораториях, прежде всего, в веществах, которые используют для мытья рук. В тех случаях, когда медицинский персонал оказывает неотложную помощь пациентам с использованием веществ, содержащих антибактериальные агенты, это уменьшает количество госпитальных инфекций. Наиболее распространёнными химическими соединениями, содержащимися в веществах для мытья рук, являются спирты, хлоргексидина глюконат, йодофоры, хлороксайленол и триклозан.

Традиционными методами обработки отходов и мусора являются сжигание и стерилизация паром.

Сжигание является методом выбора для обработки отходов и мусора. Этот метод делает отходы неинфекционными, а также изменяет их форму и размеры. Стерилизация является эффективным методом обработки отходов, но она не изменяет их формы. Стерилизация паром в автоклаве при 121ºС в течение минимум 15 минут уничтожает все формы микробной жизни, включая большое количество бактериальных спор. Этот тип полной стерилизации также можно провести с использованием сухого жара при температуре 160-170ºС на протяжении 2-4 часов. Однако следует убедиться, что сухой жар контактирует со стерилизуемым материалом. Поэтому бутылки, которые содержат жидкость, должны быть неплотно закрыты пробками или ватными тампонами для того, чтобы пар и жар могли обмениваться с воздухом в бутылках. Биологически опасные контейнеры, содержащие отходы, следует плотно завязать. Простерилизованный биологически опасный материал нужно запечатать в соответствующие контейнеры с этикетками.

Стерилизация паром (в автоклаве). Инфекционный мусор считают деконтаминированным при уменьшении в 6 lg раз количества вегетативных бактерий, грибов, микобактерий и вирусов, содержащих липиды, и в 4 lg раза - бактериальных эндоспор.

Питание бактерий.

Питание. Под питанием бактериальной клетки следует понимать процесс поглощения и усвоения пластического материала и энергии в результате преобразовательных реакций . Типы питания прокариот сложны и разнообразны. Они различаются в зависимости от способа поступления питательных веществ внутрь бактериальной клетки, источников углерода и азота, способа получения энергии, природы доноров электронов.

Транспорт питательных веществ внутрь клетки может осуществляться 3 механизмами: пассивной диффузией, облегчённой диффузией и активным транспортом.

Пассивная диффузия является неспецифическим энергозависимым процессом, осуществляемым по градиенту концентрации веществ (вещество из среды с большей своей концентрацией пассивно, согласно законам осмоса, поступает в среду с меньшей концентрацией). Пассивной диффузией внутрь бактериальной клетки поступает ограниченное количество веществ, некоторые ионы, моносахара. Скорость переноса веществ при пассивной диффузии незначительна и зависит от липофильности и размеров транспортирующихся молекул.

Облегчённая диффузия представляет собой энергонезависимый транспорт веществ по градиенту концентрации при помощи ферментов пермеаз. Пермеазы – это специфические мембранные белки, способствующие прохождению веществ через цитоплазматическую мембрану. Пермеаза фиксирует на себе молекулу переносимого вещества, вместе с которым пеодолевает цитоплазматическую мембрану, после чего комплекс «вещество – пермеаза» диссоциирует. Освободившаяся пермеаза используется для проведения других молекул. У прокариотов облегчённой диффузией внутрь клетки поступает только глицерин. При этом внутриклеточная концентрация глицерина соответствует таковой вне клетки. Облегчённая диффузия наиболее характерна для микроорганизмов-эукариот.

Активный транспорт – это энергозависимый перенос веществ внутрь клетки против градиента концентрации при помощи специфических ферментов. Активным транспортом в бактериальную клетку поступает подавляющее большинство веществ (ионы, углеводы, аминокислоты, липиды и др.). Активный транспорт может осуществляться: (1) без химической модификации переносимого вещества; (2) с химической модификацией.

В соответствии с восьмым изданием «Определителя бактерий по Берже» все бактерии делятся на 19 групп. Деление основано на некоторых важных свойствах бактерий: форме их клетки, отношении к кислороду, образованию спор, окраске по Граму*, особенностях размножения, типе питания и др. Для пищевой промышленности имеют значение следующие группы.

* Окраска по Граму - важный диагностический признак для определения микроорганизмов, обнаруживающий глубокие различия в строении и составе их клеточной стенки. Так, грамположительные организмы окрашиваются в фиолетовый цвет (первоначальная окраска), грамотрицательные - в красно-коричневый (вторичная окраска, так как первичная при обработке в растворе спирта не сохраняется).

У микроорганизмов, окрашивающихся по Граму положительно, в клеточной стенке мало белка и полисахаридов. К ним относятся дрожжи, бактерии-кокки и палочки, многие образующие споры или не образующие их (например, молочнокислые бактерии) и др.

У микроорганизмов, окрашивающихся по Граму отрицательно, в состав клеточной стенки входят соединения жировых и белковых веществ, углеводы и фосфаты. К ним относятся не образующие спор кокки и бактерии (в том числе уксуснокислые), бактерии группы кишечной палочки и др.

1. Грамотрицательные аэробные палочки и кокки. Среди этих бактерий важное значение имеет семейство Псевдомонас - прямые или изогнутые палочки со жгутиками, расположенными полярно. К брожению неспособны, обмен веществ дыхательный, строгие анаэробы (не могут размножаться в присутствии кислорода), образуют фермент каталазу, а некоторые оксидазу. Размножаются на пищевых продуктах в виде полупрозрачных колоний, иногда в виде слизей.

Вызывают изменение цвета продукта - позеленение или побурение. Размножаются в диапазоне температур 4-43 °С, хладостойки, портят пищевые продукты.

2. Грамотрицательные факультативно-анаэробные палочки и кокки. Сюда входят семейства, имеющие большое значение для качества пищевых продуктов и здоровья человека.

Семейство Энтеробактериацеэ (энтеробактерии) - небольшие палочки, подвижные (перитрихи) или неподвижные, не образующие спор, аэробы или факультативные анаэробы. Обмен веществ дыхательный или бродильный. При сбраживании глюкозы и других углеводов образуются кислота и газ (не у всех). Образуют фермент каталазу или оксидазу. Энтеробактерии являются обитателями желудочно-кишечного тракта человека и животных. По биохимическим признакам энтеробактерии делятся на два больших подраздела. К первому относятся три рода: Эшерихия, Сальмонелла и Шигелла, ко второму - род Протеус.

Эшерихия - прямые мелкие палочки, одиночные или парные, подвижные (перитрихи) или неподвижные. Хорошо растут на простых питательных средах. Сбраживают глюкозу и другие углеводы с образованием органических кислот.

Сальмонелла - палочки, обычно подвижные (перитрихи). Большинство бактерий растут на синтетических средах, сбраживают некоторые сахара с образованием газа. Вызывают пищевые отравления и инфекционные заболевания человека.

Шигелла - неподвижные палочки без капсул, хорошо растущие на питательных средах. Сбраживают глюкозу и другие углеводы с образованием кислоты, но газа не образуют. Вызывают заболевание дизентерией.

Протеус - прямые мелкие палочки, кокковидные или неправильной формы. В зависимости от условий среды форма клеток изменяется. Встречаются клетки, соединенные парами или цепочками. Клетки подвижные (перитрихи), при температуре 37 °С подвижность часто отсутствует. Капсул не образуют. Сбраживают углеводы, образуют индол. Температурные границы роста 10-43 °С.

Семейство Вибрионацеэ (вибрионовые) - прямые и изогнутые палочки, обычно подвижные, жгутики полярные. Обмен веществ бродильный и дыхательный. Оксидазу образуют факультативные анаэробы. Обычно встречаются в пресной и морской воде, иногда у рыб или человека.

К этому семейству относятся три рода - Вибрио, Зимомонас и Флавобактериум.

Вибрио - короткие мелкие, не образующие спор палочки, прямые или изогнутые, подвижные. Встречаются в пищеварительном тракте человека и животных, некоторые виды патогенны для человека и рыб. Вызывают заболевания холерой.

Для роста бактерий Зимомонас и Флавобактериум оптимальная температура ниже 30 °С. Они широко распространены в почве, пресных и морских водах. Флавобактерии обычно находятся на овощах во время их технологической обработки и в молочных продуктах. Некоторые являются вредителями бродильных производств.

3. Грамположительные кокки. В эту группу входят три семейства бактерий, различающихся по потребности в кислороде и расположению клеток.

Семейство Микрококкацеэ (Микрококкус) - мелкие сферические клетки; при размножении делятся в двух-трех направлениях, образуя неправильные группы, тетрады (группы из 4 клеток) или пакеты. Спор не образуют, подвижны или неподвижны, обмен веществ дыхательный или бродильный. Растут в присутствии 5 % поваренной соли, многие выдерживают концентрацию до 10-15%. Каталазу образуют. Аэробы или факультативные анаэробы. Оптимальная температура развития 25-30 °С. Являются обычными обитателями почвы и пресных вод. Часто встречаются в экскрементах человека и животных. В семействе Микрококкацеэ наибольшее значение имеет род Стафилококкус, так как образует токсины.

Стафилококкус - клетки сферической формы, мелкие, расположены поодиночке и в парах, а также неправильными скоплениями. Неподвижны, спор не образуют. Обмен веществ дыхательный и бродильный. Благодаря образованию внеклеточных ферментов могут расщеплять многие органические вещества - белки и жиры. Большинство штаммов растут в присутствии 15 % поваренной соли. Обычно чувствительны к нагреванию. Вырабатывают токсины, поэтому многие штаммы (коагулазоположительные, например стафилококк золотистый) патогенны.

Семейство Стрептококкацеэ (стрептококковые) - клетки сферической или овальной формы, в парах или цепочках различной длины или в тетрадах. Неподвижны, спор не образуют. Факультативные анаэробы. Обмен веществ бродильный. Из углеводов образуют кислоты.

Наибольшее значение имеют три рода: Стрептококкус, Лейконосток и Педиококкус.

Стрептококкус - сбраживают глюкозу с образованием в основном молочной кислоты. Клетки в парах, цепочках. Каталазу не образуют. Редко подвижны.

Лейконосток - сбраживают глюкозу с образованием молочной кислоты и других продуктов. Клетки делятся в одной плоскости, при этом образуются пары клеток и цепочки. Каталазу не образуют. Многие являются вредителями производства сахара, безалкогольных напитков и др.

Педиококкус - встречаются в виде одиночных клеток, в парах и тетрадах или цепочках. Неподвижны, спор не образуют, обмен веществ бродильный.

Из глюкозы и других сахаров образуют молочную кислоту. Анаэробы, но могут расти в присутствии небольших количеств кислорода. Обычно каталазу не образуют. Желатину не разжижают. Педиококки - сапрофиты, встречаются в бродящих растительных материалах. Являются вредителями пивоваренного производства, реже встречаются в молоке и молочных продуктах. Некоторые устойчивы к поваренной соли и развиваются при 15%-ной концентрации ее в среде.

4. Палочки и кокки, образующие эндоспоры. Среди бактерий этой группы наибольшее значение для пищевой промышленности имеют несколько родов, принадлежащих к семейству Бацилляцеэ.

Семейство Бацилляцеэ (бацилловые) - клетки палочковидной формы, образуют эндоспоры, более устойчивые к теплу и другим неблагоприятным факторам внешней среды. Большинство представителей грамположительны, подвижны или неподвижны, аэробы или анаэробы.

Наибольшее значение в этом семействе имеют два рода: Бациллус и Клостридиум.

Род Бациллус - мелкие подвижные палочки, жгутики обычно на конце клетки. Образуют термоустойчивые споры. Большинство видов образуют каталазу. Строгие аэробы или факультативные анаэробы. Отдельные виды рода Бациллус различаются формой клеток, положением споры в центре клетки или на конце, а также по биохимическим признакам.

Среди представителей этого рода имеются гнилостные бактерии - сапрофиты, вызывающие гидролиз белка, - Бациллус субтилис (сенная палочка), образующие очень термостойкие споры.

В этот же род входят патогенные бактерии, вызывающие пищевое отравление (Бациллус цереус), а также патогенные Бациллус антрацис, вызывающие острое инфекционное заболевание животных, передающееся человеку, - сибирскую язву.

Род Клостридиум - палочки, обычно подвижные (перитрихи), иногда неподвижные. Образуют споры различной формы (от овальной до сферической), которые обычно раздувают клетку. Мезофильные клостридии обитают в почве, пыли, воздухе, воде, осадках водоемов. Вызывают гнилостные процессы, маслянокислое брожение, сбраживают сахара, некоторые виды фиксируют атмосферный азот. Большинство штаммов - строгие анаэробы, хотя некоторые могут расти в присутствии кислорода воздуха. Каталазу обычно не образуют. Как правило, грамположительны.

К роду Клостридиум относятся бактерии с различными свойствами. Одни из них являются мезофилами и постоянно загрязняют пищевые продукты. Некоторые клостридии являются термофилами, образуют термостойкие споры, вызывают порчу консервов.

Некоторые виды клостридий, например Клостридиум ботулинум, образуют токсины и вызывают пищевое отравление. Два вида из рода Клостридиум являются патогенными. Клостридиум тетани вызывает заболевание человека столбняком. Клостридиум перфрингенс при попадании в желудочно-кишечный тракт вызывает пищевое отравление, при попадании в раны - газовую гангрену.

5. Грамположительные палочки, не образующие спор. Бактерии палочковидные или нитевидные, подвижные или неподвижные, образующие каталазу или неспособные к этому.

Семейство Лактобациллацеэ (лактобацилловые). Бактерии этого семейства - прямые или изогнутые палочки, обычно одиночные или в цепочках. Основная часть неподвижна. Анаэробы или факультативные анаэробы. Обладают сложными пищевыми потребностями в органических веществах. Способны сбраживать сахара. Каталазу не образуют. Бактерии рода Лактобациллус (молочнокислые бактерии) - палочки, часто образующие цепочки. Подвижность встречается редко. Обмен веществ бродильный. Одни представители этого рода - строгие анаэробы, другие могут расти при доступе кислорода воздуха. Сбраживают сахара. Температурные пределы роста 5-53 °С, оптимальная температура 30-40 °С. Кислотоустойчивы: растут при рН 5,0 и ниже.

Виды различаются по типу молочнокислого брожения. У гомоферментативных видов основным продуктом жизнедеятельности является молочная кислота. Сюда относятся бактерии Лактобациллус булгарикус (болгарская палочка), применяемые для получения простокваши, Лактобациллус казеи, используемые при производстве сыра, и др.

Рис. 5. Строение актиномицетов: а - ветвящиеся гифы (нити); б - часть гифы со спорами; в - палочки с боковыми выростами.

У гетероферментативных бактерий в результате сбраживания глюкозы 50 % конечных продуктов составляет молочная кислота, остальное - углекислый газ и кислоты.

6. Актиномицеты и родственные микроорганизмы.

В эту группу входят бактерии, различающиеся по форме клеток и свойствам.

Род Коринебактериум - грамположительные неподвижные палочки неправильной формы, не образующие споры и каталазу. Среди них известны патогенные виды, образующие токсин, - это возбудители дифтерии, а также вызывающие болезни растений и животных. Отличаются «щелкающим» делением. Сюда же входят организмы, вызывающие пропионовокислое брожение - пропионовокислые бактерии.

Большое значение имеют актиномицеты - неподвижные одноклеточные организмы, обладающие способностью ветвиться. Одни актиномицеты образуют мицелий из тонких нитей, другие (немицелиальные) существуют в виде отдельных клеток неправильной формы, иногда кокковидных (рис. 5).

Актиномицеты широко распространены в почве, воде и в пищевых продуктах и вызывают их порчу, проявляющуюся в появлении землистого запаха.