Меню
Бесплатно
Главная  /  Грамматика   /  Линейные и квадратные неравенства как решать пошагово. Квадратные неравенства. Способы решения квадратных неравенств

Линейные и квадратные неравенства как решать пошагово. Квадратные неравенства. Способы решения квадратных неравенств

Определение квадратного неравенства

Замечание 1

Квадратным неравенство называется т.к. переменная возведена в квадрат. Также квадратные неравенства называют неравенствами второй степени .

Пример 1

Пример .

$7x^2-18x+3 0$, $11z^2+8 \le 0$ – квадратные неравенства.

Как видно из примера, не все элементы неравенства вида $ax^2+bx+c > 0$ присутствуют.

Например, в неравенстве $\frac{5}{11} y^2+\sqrt{11} y>0$ нет свободного члена (слагаемое $с$), а в неравенстве $11z^2+8 \le 0$ нет слагаемого с коэффициентом $b$. Такие неравенства также являются квадратными, но их еще называют неполными квадратными неравенствами . Это лишь означает, что коэффициенты $b$ или $с$ равны нулю.

Методы решения квадратных неравенств

При решении квадратных неравенств используют такие основные методы:

  • графический;
  • метод интервалов;
  • выделения квадрата двучлена.

Графический способ

Замечание 2

Графический способ решения квадратных неравенств $ax^2+bx+c > 0$ (или со знаком $

Данные промежутки и являются решением квадратного неравенства .

Метод интервалов

Замечание 3

Метод интервалов решения квадратных неравенств вида $ax^2+bx+c > 0$ (знак неравенства может быть также $

Решениями квадратного неравенства со знаком $«»$ – положительные промежутки, со знаками $«≤»$ и $«≥»$ – отрицательные и положительные промежутки (соответственно), включая точки, которые отвечают нулям трехчлена.

Выделение квадрата двучлена

Метод решения квадратного неравенства выделением квадрата двучлена заключается в переходе к равносильному неравенству вида $(x-n)^2 > m$ (или со знаком $

Неравенства, которые сводятся к квадратным

Замечание 4

Зачастую при решении неравенств их нужно привести к квадратным неравенствам вида $ax^2+bx+c > 0$ (знак неравенства может быть также $ неравенствами, которые сводятся к квадратным.

Замечание 5

Самым простым способом приведения неравенств к квадратным может быть перестановка в исходном неравенстве слагаемых или перенос их, например, из правой части в левую.

Например, при переносе всех слагаемых неравенства $7x > 6-3x^2$ из правой части в левую получается квадратное неравенство вида $3x^2+7x-6 > 0$.

Если переставить в левой части неравенства $1,5y-2+5,3x^2 \ge 0$ слагаемые в порядке убывания степени переменной $у$, то это приведет к равносильному квадратному неравенству вида $5,3x^2+1,5y-2 \ge 0$.

При решении рациональных неравенств часто используют приведение их к квадратным неравенствам. При этом необходимо перенести все слагаемые в левую часть и преобразовать получившееся выражение к виду квадратного трехчлена.

Пример 2

Пример .

Привести неравенство $7 \cdot (x+0,5) \cdot x > (3+4x)^2-10x^2+10$ к квадратному.

Решение .

Перенесем все слагаемые в левую часть неравенства:

$7 \cdot (x+0,5) \cdot x-(3+4x)^2+10x^2-10 > 0$.

Используя формулы сокращенного умножения и раскрывая скобки, упростим выражение в левой части неравенства:

$7x^2+3,5x-9-24x-16x^2+10x^2-10 > 0$;

$x^2-21,5x-19 > 0$.

Ответ : $x^2-21,5x-19 > 0$.

В данном разделе мы собрали информацию о квадратных неравенствах и основных подходах к их решению. Закрепим материал разбором примеров.

Что представляет собой квадратное неравенство

Давайте посмотрим, как по виду записи различать неравенства различных видов и выделять среди них квадратные.

Определение 1

Квадратное неравенство – это такое неравенство, которое имеет вид a · x 2 + b · x + c < 0 , где a , b и c – некоторые числа, причем a не равно нулю. x – это переменная, а на месте знака < может стоять любой другой знак неравенства.

Вторым названием квадратных уравнений является название «неравенства второй степени». Объяснить наличие второго названия можно следующим образом. В левой части неравенства находится многочлен второй степени – квадратный трехчлен. Применение к квадратным неравенствам термина «квадратичные неравенства» некорректен, так как квадратичными являются функции, которые задаются уравнениями вида y = a · x 2 + b · x + c .

Приведем пример квадратного неравенства:

Пример 1

Возьмем 5 · x 2 − 3 · x + 1 > 0 . В этом случае a = 5 , b = − 3 и c = 1 .

Или вот такое неравенство:

Пример 2

− 2 , 2 · z 2 − 0 , 5 · z − 11 ≤ 0 , где a = − 2 , 2 , b = − 0 , 5 и c = − 11 .

Покажем несколько примеров квадратных неравенств:

Пример 3

Особое внимание нужно обратить на тот факт, что коэффициент при x 2 считается неравным нулю. Объясняется это тем, что иначе мы получим линейное неравенство вида b · x + c > 0 , так как квадратная переменная при умножении на ноль сама станет равной нулю. При этом, коэффициенты b и c могут быть равны нулю как вместе, так и по отдельности.

Пример 4

Пример такого неравенства x 2 − 5 ≥ 0 .

Способы решения квадратных неравенств

Основным метода три:

Определение 2

  • графический;
  • метод интервалов;
  • через выделение квадрата двучлена в левой части.

Графический метод

Метод предполагает проведение построения и анализа графика квадратичной функции y = a · x 2 + b · x + c для квадратных неравенств a · x 2 + b · x + c < 0 (≤ , > , ≥) . Решением квадратного неравенства являются промежутки или интервалы, на которых указанная функция принимает положительные и отрицательные значения.

Метод интервалов

Решить квадратное неравенство с одной переменной можно методом интервалов. Метод применим для решения любого вида неравенств, не только квадратных. Суть метода в том, чтобы определить знаки промежутков, на которые разбивается ось координат нулями трехчлена a · x 2 + b · x + c при их наличии.

Для неравенства a · x 2 + b · x + c < 0 решениями являются промежутки со знаком минус, для неравенства a · x 2 + b · x + c > 0 , промежутки со знаком плюс. Если мы имеем дело с нестрогими неравенствами, то решением становится интервал, который включает точки, которые соответствуют нулям трехчлена.

Выделение квадрата двучлена

Принцип выделения квадрата двучлена в левой части квадратного неравенства состоит в выполнении равносильных преобразований, которые позволяют перейти к решению равносильного неравенства вида (x − p) 2 < q (≤ , > , ≥) , где p и q – некоторые числа.

К квадратным неравенствам с помощью равносильных преобразований можно прийти от неравенств других видов. Сделать это можно разными способами. Например, перестановкой в данном неравенства слагаемых или переносом слагаемых из одной части в другую.

Приведем пример. Рассмотрим равносильное преобразование неравенства 5 ≤ 2 · x − 3 · x 2 . Если мы перенесем все слагаемые из правой части в левую, то получим квадратное неравенство вида 3 · x 2 − 2 · x + 5 ≤ 0 .

Пример 5

Необходимо найти множество решений неравенства 3 · (x − 1) · (x + 1) < (x − 2) 2 + x 2 + 5 .

Решение

Для решения задачи используем формулы сокращенного умножения. Для этого соберем все слагаемые в левой части неравенства, раскроем скобки и приведем подобные слагаемые:

3 · (x − 1) · (x + 1) − (x − 2) 2 − x 2 − 5 < 0 , 3 · (x 2 − 1) − (x 2 − 4 · x + 4) − x 2 − 5 < 0 , 3 · x 2 − 3 − x 2 + 4 · x − 4 − x 2 − 5 < 0 , x 2 + 4 · x − 12 < 0 .

Мы получили равносильное квадратное неравенство, которое можно решить графическим способом, определив дискриминант и точки пересечения.

D ’ = 2 2 − 1 · (− 12) = 16 , x 1 = − 6 , x 2 = 2

Построив график, мы можем увидеть, что множеством решений является интервал (− 6 , 2) .

Ответ: (− 6 , 2) .

Примером неравенств, которые часто сводятся к квадратным, могут служить иррациональные и логарифмические неравенства. Так, например, неравенство 2 · x 2 + 5 < x 2 + 6 · x + 14

равносильно квадратному неравенству x 2 − 6 · x − 9 < 0 , а логарифмическое неравенство log 3 (x 2 + x + 7) ≥ 2 – неравенству x 2 + x − 2 ≥ 0 .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Общий вид квадратного неравенства после переноса всех выражений на одну сторону неравенства представляет собой одну из следующих форм:

$ax^2+bx+c > 0$ , либо $ax^2+bx+c \geq 0$ либо $ax^2+bx+c

Когда $a \neq 0$ , а также $b, c \in \mathbb{R}$

Решением каждого неравенства указанного выше, является нахождение всех действительных чисел, которыми можно заменить $x$ так, чтобы неравенство было верным.

Например, если мы заявляем, что $x = 1$ является одним из корней неравенства $x^2 - \frac{1}{2} > 0$. Подставив 1 вместо всех переменных $x$ в неравенстве, мы получим, что $1^2 - \frac{1}{2} > 0 \rightarrow \frac{1}{2} > 0$ ,
что всегда верно. Поэтому $x = 1$ является одним из решений данного неравенства.

Теперь мы научимся решать неравенства (1).

Во-первых, мы рассмотрим уравнение с двумя переменными, $y = ax^2+bx+c$, и предположим, что $ax^2+bx+c$ равно нулю. Тогда:

$ax^2+bx+c = 0 \rightarrow a(x^2+\frac{b}{a}x+\frac{c}{a}) = 0 \rightarrow^{a \neq 0} x^2+\frac{b}{a}x+\frac{c}{a} = 0 \rightarrow$
$x^2+\frac{b}{a}x+\frac{c}{a}+\frac{b^2}{4a^2}-\frac{b^2}{4a^2} = 0 \rightarrow (x + \frac{b}{2a})^2 - \frac{b^2 - 4ac}{4a^2} = 0 \rightarrow$
$(x + \frac{b}{2a})^2 = \frac{b^2 - 4ac}{4a^2} \rightarrow x + \frac{b}{2a} = \pm \sqrt{\frac{b^2 - 4ac}{4a^2}} \rightarrow x + \frac{b}{2a} = \pm \frac{\sqrt{b^2 - 4ac}}{2a} \rightarrow $
$x = \frac{-b}{2a} \pm \frac{\sqrt{b^2 - 4ac}}{2a} \rightarrow x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Из этого следует, что график квадратного уравнения пересекает ось x в точке $x_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$ и $x_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$

Эти нули разделяют числовую прямую на три интервала:

$(-\infty, x_1)$ , $$ , $(x_2,+\infty)$,

допуская, что $x_1

Теперь пусть $\Delta = b^2 - 4ac$.

Мы можем рассмотреть три указанных ниже случая:

  1. $\Delta > 0$
  2. $\Delta = 0$
  3. $\Delta

Случай 1: Если $\Delta > 0$,

Тогда $ax^2+bx+c$ имеет два различных корня $(x_1 \neq x_2)$.
Теперь, если $a>0$, то его график получается таким, как на "Рисунке а" .
Если $a "Рисунке b". Поэтому, если $a>0$ и, если имеем $ax^2+bx+c \geq 0 (ax^2+bx+c > 0)$, то тогда множество решений это:
$(-\infty, x_1] \cup $ $((x_1,x_2))$
С другой стороны, если $a 0)$, тогда множество решений это:
$$ $((x_1,x_2))$
А если имеем $ax^2+bx+c \leq 0 (ax^2+bx+c $(-\infty, x_1] \cup \cup }