Меню
Бесплатно
Главная  /  География  /  Между какими элементами образуется металлическая связь. Металлическая связь. Металлическая кристаллическая решетка и металлическая химическая связь. Ключевые слова и словосочетания

Между какими элементами образуется металлическая связь. Металлическая связь. Металлическая кристаллическая решетка и металлическая химическая связь. Ключевые слова и словосочетания

В результате электростатического притяжения меж­ду катионом и анионом образуется, молекула.

Ионная связь

Теорию ионной связи предложил в 1916 ᴦ. немецкий ученый В. Коссель. Эта теория объясняет образование связей между атомами типичных металлов и атома­ми типичных неметаллов: CsF, CsCl, NaCl, KF, KCl, Na 2 O и др.

Согласно этой теории, при образовании ионной связи атомы типичных металлов отдают электроны, а атомы типичных неметаллов принимают электроны.

В результате этих процессов атомы металлов превра­щаются в положительно заряженные частицы, которые называются положительными ионами или катионами; а атомы неметаллов превращаются в отрицательные ионы - анионы. Заряд катиона равен числу отданных электронов.

Атомы металлов отдают электроны внешнего слоя, а образующиеся ионы имеют завершенные электронные структуры (предвнешнего электронного слоя).

Величина отрицательного заряда аниона равна числу принятых электронов.

Атомы неметаллов принимают такое количество элек­тронов, какое им крайне важно для завершения электрон­ного октета (внешнего электронного слоя).

К примеру: общая схема образования молекулы NaCl из атомов Na и С1: Na°-le = Na +1 Образование ионов

Сl°+1е - = Сl -

Na +1 + Сl - = Nа + Сl -

Na°+ Сl°= Nа + Сl - Соединœение ионов

· Связь между ионами принято называть ионной связью.

Соединœения, которые состоят из ионов, называются ионными соединœениями.

Алгебраическая сумма зарядов всœех ионов в моле­куле ионного соединœения должна быть равна нулю, потому что любая молекула является электронейтраль­ной частицей.

Резкой границы между ионной и ковалентнои связя­ми не существует. Ионную связь можно рассматривать как крайний случай полярной ковалентнои связи, при образовании которой общая электронная пара полнос­тью смещается к атому с большей электроотрицательно­стью.

Атомы большинства типичных металлов на внешнем электронном слое имеют небольшое число электронов (как правило, от 1 до 3); эти электроны называются валент­ными. В атомах металлов прочность связи валентных электронов с ядром невысокая, то есть атомы обладают низкой энергией ионизации. Это обусловливает легкость потери валентных электронов ч превращения атомов ме­талла в положительно заряженные ионы (катионы):

Ме° -nе ® Ме n +

В кристаллической структуре металла валентные элек­троны обладают способностью легко перемещаться от од­ного атома к другому, что приводит к обобществлению электронов всœеми сосœедними атомами. Упрощенно строе­ние кристалла металла представляется следующим обра­зом: в узлах кристаллической решетки находятся ионы Ме п+ и атомы Ме°, а между ними относительно свободно перемещаются валентные электроны, осуществляя связь между всœеми атомами и ионами металла (рис. 3). Это осо­бый тип химической связи, называемой металлической.

· Металлическая связь - связь между атомами и ионами металлов в кристаллической решетке, осу­ществляемая обобществленными валентными электронами.

Благодаря этому типу химической связи металлы об­ладают определœенным комплексом физических и хими­ческих свойств, отличающим их от неметаллов.

Рис. 3. Схема кристаллической решетки металлов.

Прочность металлической связи обеспечивает устой­чивость кристаллической решетки и пластичность метал­лов (способность подвергаться разнообразной обработке без разрушения). Свободное передвижение валентных электронов позволяет металлам хорошо проводить элект­рический ток и тепло. Способность отражать световые вол­ны (ᴛ.ᴇ. металлический блеск) также объясняется строе­нием кристаллической решетки металла.

Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, наиболее характерными физическими свойствами металлов исходя из наличия металли­ческой связи являются:

■кристаллическая структура;

■металлический блеск и непрозрачность;

■пластичность, ковкость, плавкость;

■высокие электро- и теплопроводность; и склонность к образованию сплавов.

Металлическая связь - понятие и виды. Классификация и особенности категории "Металлическая связь" 2017, 2018.

  • - Металлическая связь

  • - Металлическая связь

    Само название «металлическая связь» указывает, что речь пойдет о внутренней структуре металлов. Атомы большинства металлов на внешнем энергетическом уровне содержат небольшое число валентных электронов по сравнению с общим числом внешних энергетически близких... .


  • - Металлическая связь

    Металлическая связь основана на обобществлении валентных электронов, принадлежащих не двум, а практически всем атомам металла в кристалле. В металлах валентных электронов намного меньше, чем свободных орбиталей. Это создает условия для свободного перемещения... .


  • - Металлическая связь

    Существенные сведения относительно природы химической связи в металлах модно получить на основании двух характерных особенностей по сравнению с ковалентными и ионными соединениями. Металлы, во-первых, отличаются от других веществ высокой электропроводностью и... .


  • - Металлическая связь

    Существенные сведения о природе химической связи в металлах можно получить на основании двух характерных для них особенностей по сравнению с ковалентными и ионными соединениями. Металлы, во-первых, отличаются от других веществ высокой электрической проводимостью и... .


  • - Строение молекулы. Теория химической связи. Ионная связь Металлическая связь. Ковалентная связь. Энергия связи. Длина связи. Валентный угол. Свойства химической связи.

    Молекула – наименьшая частица вещества, обладающая его химическими свойствами. Согласно теории химической связи, устойчивому состоянию элемента соответствует структура с электронной формулой внешнего уровня s2p6 (аргон, криптон, радон, и другие). При образовании... .


  • Металлическая связь — химическая связь, обусловленная наличием относительно свободных электронов. Характерна как для чистых металлов, так и их сплавов и интерметаллических соединений.

    Механизм металлической связи

    Во всех узлах кристаллической решётки расположены положительные ионы металла . Между ними беспорядочно, подобно молекулам газа движутся валентные электроны, отцепившиеся от атомов при образовании ионов. Эти электроны играют роль цемента, удерживая вместе положительные ионы; в противном случае решётка распалась бы под действием сил отталкивания между ионами. Вместе с тем и электроны удерживаются ионами в пределах кристаллической решётки и не могут её покинуть. Силы связи не локализованы и не направлены.

    Поэтому в большинстве случаев проявляются высокие координационные числа (например, 12 или 8). Когда два атома металла сближаются, орбитали их внешних оболочек перекрываются, образуя молекулярные орбитали. Если подходит третий атом, его орбиталь перекрывается с орбиталями первых двух атомов, что дает еще одну молекулярную орбиталь. Когда атомов много, возникает огромное число трехмерных молекулярных орбиталей, простирающихся во всех направлениях. Вследствие многократного перекрывания орбиталей валентные электроны каждого атома испытывают влияние многих атомов.

    Характерные кристаллические решётки

    Большинство металлов образует одну из следующих высокосимметричных решёток с плотной упаковкой атомов: кубическую объемно центрированную, кубическую гранецентрированную и гексагональную.

    В кубической объемно центрированной решётке (ОЦК) атомы расположены в вершинах куба и один атом в центре объёма куба. Кубическую объемно центрированную решётку имеют металлы: Pb, K, Na, Li, β-Ti, β-Zr, Ta, W, V, α-Fe, Cr, Nb, Ba и др.

    В кубической гранецентрированной решётке (ГЦК) атомы расположены в вершинах куба и в центре каждой грани. Решётку такого типа имеют металлы: α-Ca, Ce, α-Sr, Pb, Ni, Ag, Au, Pd, Pt,Rh, γ-Fe, Cu, α-Co и др.

    В гексагональной решётке атомы расположены в вершинах и центре шестигранных оснований призмы, а три атома — в средней плоскости призмы. Такую упаковку атомов имеют металлы: Mg, α-Ti, Cd, Re, Os, Ru, Zn, β-Co, Be, β-Ca и др.

    Другие свойства

    Свободно движущиеся электроны обусловливают высокую электро- и теплопроводность. Вещества, обладающие металлической связью, часто сочетают прочность с пластичностью, так как при смещении атомов друг относительно друга не происходит разрыв связей. Также важным свойством является металлическая ароматичность.

    Металлы хорошо проводят тепло и электричество, они достаточно прочны, их можно деформировать без разрушения. Некоторые металлы ковкие (их можно ковать), некоторые тягучие (из них можно вытягивать проволоку). Эти уникальные свойства объясняются особым типом химической связи, соединяющей атомы металлов между собой - металлической связью.


    Металлы в твердом состоянии существуют в виде кристаллов из положительных ионов, как бы “плавающих” в море свободно движущихся между ними электронов.

    Металлическая связь объясняет свойства металлов, в частности, их прочность. Под действием деформирующей силы решетка металла может изменять свою форму, не давая трещин, в отличие от ионных кристаллов.

    Высокая теплопроводность металлов объясняется тем, что если нагреть кусок металла с одной стороны, то кинетическая энергия электронов увеличится. Это увеличение энергии распространится в “ электронном море” по всему образцу с большой скоростью.

    Становится понятной и электрическая проводимость металлов. Если к концам металлического образца приложить разность потенциалов, то облако делокализованных электронов будет сдвигаться в направлении положительного потенциала: этот поток электронов, движущихся в одном направлении, и представляет собой всем знакомый электрический ток.

    Атомы большинства элементов не суще­ствуют отдельно, так как могут взаимодействовать между собой. При этом взаимодействии образуются более сложные части­цы.

    Природа химической связи состоит в действии электростатических сил, которые являются силами взаимодействия между электричес­кими зарядами. Такие заряды имеют электроны и ядра атомов.

    Электроны, расположенные на внешних электронных уровнях (валентные электроны) находясь дальше всех от ядра, слабее всего с ним взаимодействуют, а значит способны отрываться от ядра. Именно они отвечают за связывание атомов друг с другом.

    Типы взаимодействия в химии

    Типы химической связи можно представить в виде следующей таблицы:

    Характеристика ионной связи

    Химическое взаимодействие, которое образуется из-за притяжения ионов , имеющих разные заряды, называется ионным. Такое происходит, если связываемые атомы имеют существенную разницу в электроотрицательности (то есть способности притягивать электроны) и электронная пара переходит к более электроотрицательному элементу. Результатом такого перехода электронов от одного атома к другому является образование заряженных частиц - ионов. Между ними и возникает притяжение.

    Наименьшими показателями электроотрицательности обладают типичные металлы , а наибольшими - типичные неметаллы. Ионы, таким образом, образуются при взаимодействии между типичными металлами и типичными неметаллами.

    Атомы металла становятся положительно заряженными ионами (катионами), отдавая электроны внешних электронных уровней, а неметаллы принимают электроны, превращаясь таким образом в отрицательно заряженные ионы (анионы).

    Атомы переходят в более устойчивое энергетическое состояние, завершая свои электронные конфигурации.

    Ионная связь ненаправленная и не насыщаемая, так как электростатическое взаимодействие происходит во все стороны, соответственно ион может притягивать ионы противоположного знака во всех направлениях.

    Расположение ионов таково, что вокруг каждого находится определённое число противоположно заряженных ионов. Понятие «молекула» для ионных соединений смысла не имеет .

    Примеры образования

    Образование связи в хлориде натрия (nacl) обусловлено передачей электрона от атома Na к атому Cl с образованием соответствующих ионов:

    Na 0 - 1 е = Na + (катион)

    Cl 0 + 1 е = Cl — (анион)

    В хлориде натрия вокруг катионов натрия расположено шесть анионов хлора, а вокруг каждого иона хлора — шесть ионов натрия.

    При образовании взаимодействия между атомами в сульфиде бария происходят следующие процессы:

    Ba 0 - 2 е = Ba 2+

    S 0 + 2 е = S 2-

    Ва отдаёт свои два электрона сере в результате чего образуются анионы серы S 2- и катионы бария Ba 2+ .

    Металлическая химическая связь

    Число электронов внешних энергетических уровней металлов невелико, они легко отрываются от ядра. В результате такого отрыва образуются ионы металла и свобод­ные электроны. Эти электроны называются «электронным газом». Электроны свободно перемещаются по объёму металла и постоянно связываются и отрываются от атомов.

    Строение вещества металла таково: кристаллическая решётка является остовом вещества, а между её узлами электроны могут свободно перемещаться.

    Можно привести следующие примеры:

    Mg - 2е <-> Mg 2+

    Cs - e <-> Cs +

    Ca - 2e <-> Ca 2+

    Fe - 3e <-> Fe 3+

    Ковалентная: полярная и неполярная

    Наиболее распространённым видом химического взаимодействия является ковалентная связь. Значения электроотрицательности элементов, вступающих во взаимодействие, отличаются не резко, в связи с этим происходит только смещение общей электронной пары к более электроотрицательному атому.

    Ковалентное взаимодействие может образовываться по обменному механизму или по донорно-акцепторному.

    Обменный механизм реализуется, если у каждого из атомов есть неспаренные электроны на внешних электронных уровнях и перекрывание атомных орбиталей приводит к возникновению пары электронов, принадлежащей уже обоим атомам. Когда же у одного из атомов есть пара электронов на внешнем электронном уровне, а у другого — свободная орбиталь, то при перекрывании атомных орбиталей происходит обобществление электронной пары и взаимодействие по донорно-акцепторному механизму.

    Ковалентные разделяются по кратности на:

    • простые или одинарные;
    • двойные;
    • тройные.

    Двойные обеспечивают обобществление сразу двух пар электронов, а тройные — трёх.

    По распределению электронной плотности (полярности) между связываемыми атомами ковалентная связь делится на:

    • неполярную;
    • полярную.

    Неполярную связь образуют одинаковые атомы, а полярную - разные по электроотрицательности.

    Взаимодействие близких по электроотрицательности атомов называют неполярной связью. Общая пара электронов в такой молекуле не притянута ни к одному из атомов, а принадлежит в равной мере обоим.

    Взаимодействие различающихся по электроотрицательности элементов приводит к образованию полярных связей. Общие электронные пары при таком типе взаимодействия притягиваются более электроотрицательным элементом, но полностью к нему не переходят (то есть образования ионов не происходит). В результате такого смещения электронной плотности на атомах появляются частичные заряды: на более электроотрицательном — отрицательный заряд, а на менее — положительный.

    Свойства и характеристика ковалентности

    Основные характеристики ковалентной связи:

    • Длина определяется расстоянием между ядрами взаимодействующих атомов.
    • Полярность определяется смещением электронного облака к одному из атомов.
    • Направленность - свойство образовывать ориентированные в пространстве связи и, соответственно, молекулы, имеющие определённые геометрические формы.
    • Насыщаемость определяется способностью образовывать ограниченное число связей.
    • Поляризуемость определяется способностью изменять полярность под действием внешнего электрического поля.
    • Энергия необходимая для разрушения связи, определяющая её прочность.

    Примером ковалентного неполярного взаимодействия могут быть молекулы водорода (H2) , хлора (Cl2), кислорода (O2), азота (N2) и многие другие.

    H· + ·H → H-H молекула имеет одинарную неполярную связь,

    O: + :O → O=O молекула имеет двойную неполярную,

    Ṅ: + Ṅ: → N≡N молекула имеет тройную неполярную.

    В качестве примеров ковалентной связи химических элементов можно привести молекулы углекислого (CO2) и угарного (CO) газа, сероводорода (H2S), соляной кислоты (HCL), воды (H2O), метана (CH4) , оксида серы (SO2) и многих других.

    В молекуле CO2 взаимосвязь между углеродом и атомами кислорода ковалентная полярная, так как более электроотрицательный водород притягивает к себе электронную плотность. Кислород имеет два неспаренных электрона на внешнем уровне, а углерод может предоставить для образования взаимодействия четыре валентных электрона. В результате образуются двойные связи и молекула выглядит так: O=C=O.

    Для того чтобы определиться с типом связи в той или иной молекуле, достаточно рассмотреть составляющие её атомы. Простые вещества металлы образуют металлическую, металлы с неметаллами — ионную, простые вещества неметаллы — ковалентную неполярную, а молекулы, состоящие из разных неметаллов, образуются посредством ковалентной полярной связью.

    Всем металлам присущи такие характеристики, как:

    Малое количество электронов на внешнем энергетическом уровне (кроме некоторых исключений, у которых их может быть 6,7 и 8);

    Большой атомный радиус;

    Низкая энергия ионизации.

    Все это способствует легкому отделению внешних неспаренных электронов от ядра. При этом свободных орбиталей у атома остается очень много. Схема образования металлической связи как раз и будет показывать перекрывание многочисленных орбитальных ячеек разных атомов между собой, которые в результате и формируют общее внутрикристаллическое пространство. В него подаются электроны от каждого атома, которые начинают свободно блуждать по разным частям решетки. Периодически каждый из них присоединяется к иону в узле кристалла и превращает его в атом, затем снова отсоединяется, формируя ион.

    Таким образом, металлическая связь - это связь между атомами, ионами и свободными электронами в общем кристалле металла. Электронное облако, свободно перемещающееся внутри структуры, называют "электронным газом". Именно им объясняется большинство физических свойств металлов и их сплавов.

    Как конкретно реализует себя металлическая химическая связь? Примеры можно привести разные. Попробуем рассмотреть на кусочке лития. Даже если взять его размером с горошину, атомов там будут тысячи. Вот и представим себе, что каждый из этих тысяч атомов отдает свой валентный единственный электрон в общее кристаллическое пространство. При этом, зная электронное строения данного элемента, можно увидеть количество пустующих орбиталей. У лития их будет 3 (р-орбитали второго энергетического уровня). По три у каждого атома из десятков тысяч - это и есть общее пространство внутри кристалла, в котором "электронный газ" свободно перемещается.

    Вещество с металлической связью всегда прочное. Ведь электронный газ не позволяет кристаллу рушиться, а лишь смещает слои и тут же восстанавливает. Оно блестит, обладает определенной плотностью (чаще всего высокой), плавкостью, ковкостью и пластичностью.



    Где еще реализуется металлическая связь? Примеры веществ:

    Металлы в виде простых структур;

    Все сплавы металлов друг с другом;

    Все металлы и их сплавы в жидком и твердом состоянии.

    Конкретных примеров можно привести просто неимоверное количество, ведь металлов в периодической системе более 80!

    Механизм образования в общем виде выражается следующей записью: Ме 0 - e - ↔ Ме n+ . Из схемы очевидно, какие частицы присутствуют в кристалле металла.

    Любой металл способен отдавать электроны, превращаясь в положительно заряженный ион.

    На примере железа: Fe 0 -2e - = Fe 2+

    Куда направляются отделившиеся отрицательно заряженные частицы - электроны? Минус всегда притягивается к плюсу. Электроны притягиваются к другому иону (положительно заряженному) железа в кристаллической решетке: Fe 2+ +2e - = Fe 0

    Ион становится нейтральным атомом. И такой процесс повторяется много раз.

    Получается, что свободные электроны железа находятся в постоянном движении по всему объему кристалла, отрываясь и присоединяясь к ионам в узлах решетки. Другое название этого явления -делокализованное электронное облако . Термин «делокализованный» обозначает - свободный, не привязанный.

    Металлическая связь. Свойства металлической связи.

    Металлическая связь - химическая связь, обусловленная наличием относительно свободных электронов. Характерна как для чистых металлов, так и их сплавов и интерметаллических соединœений.

    Механизм металлической связи

    Во всœех узлах кристаллической решётки расположены положительные ионы металла. Между ними беспорядочно, подобно молекулам газа движутся валентные электроны, отцепившиеся от атомов при образовании ионов. Эти электроны играют роль цемента͵ удерживая вместе положительные ионы; в противном случае решётка распалась бы под действием сил отталкивания между ионами. Вместе с тем и электроны удерживаются ионами в пределах кристаллической решётки и не могут её покинуть. Силы связи не локализованы и не направлены. По этой причине в большинстве случаев проявляются высокие координационные числа (к примеру, 12 или 8). Когда два атома металла сближаются, орбитали их внешних оболочек перекрываются, образуя молекулярные орбитали. В случае если подходит третий атом, его орбиталь перекрывается с орбиталями первых двух атомов, что дает еще одну молекулярную орбиталь. Когда атомов много, возникает огромное число трехмерных молекулярных орбиталей, простирающихся во всœех направлениях. Вследствие многократного перекрывания орбиталей валентные электроны каждого атома испытывают влияние многих атомов.

    Характерные кристаллические решётки

    Большинство металлов образует одну из следующих высокосимметричных решёток с плотной упаковкой атомов: кубическую объёмно центрированную, кубическую гранецентрированную и гексагональную.

    В кубической объёмно центрированной решётке (ОЦК) атомы расположены в вершинах куба и один атом в центре объёма куба. Кубическую объёмно центрированную решётку имеют металлы: Pb, K, Na, Li, β-Ti, β-Zr, Ta, W, V, α-Fe, Cr, Nb, Ba и др.

    В кубической гранецентрированной решётке (ГЦК) атомы расположены в вершинах куба и в центре каждой грани. Решётку такого типа имеют металлы: α-Ca, Ce, α-Sr, Pb, Ni, Ag, Au, Pd, Pt,Rh, γ-Fe, Cu, α-Co и др.

    В гексагональной решётке атомы расположены в вершинах и центре шестигранных оснований призмы, а три атома - в средней плоскости призмы. Такую упаковку атомов имеют металлы:Mg, α-Ti, Cd, Re, Os, Ru, Zn, β-Co, Be, β-Ca и др.

    Другие свойства

    Свободно движущиеся электроны обусловливают высокую электро- и теплопроводность. Вещества, обладающие металлической связью, часто сочетают прочность с пластичностью, так как при смещении атомов друг относительно друга не происходит разрыв связей. Также важным свойством является металлическая ароматичность.

    Металлы хорошо проводят тепло и электричество, они достаточно прочны, их можно деформировать без разрушения. Некоторые металлы ковкие (их можно ковать), некоторые тягучие (из них можно вытягивать проволоку). Эти уникальные свойства объясняются особым типом химической связи, соединяющей атомы металлов между собой – металлической связью.

    Металлы в твердом состоянии существуют в виде кристаллов из положительных ионов, как бы “плавающих” в море свободно движущихся между ними электронов.

    Металлическая связь объясняет свойства металлов, в частности, их прочность. Под действием деформирующей силы решетка металла может изменять свою форму, не давая трещин, в отличие от ионных кристаллов.

    Высокая теплопроводность металлов объясняется тем, что если нагреть кусок металла с одной стороны, то кинœетическая энергия электронов увеличится. Это увеличение энергии распространится в “ электронном море” по всœему образцу с большой скоростью.

    Становится понятной и электрическая проводимость металлов. В случае если к концам металлического образца приложить разность потенциалов, то облако делокализованных электронов будет сдвигаться в направлении положительного потенциала:данный поток электронов, движущихся в одном направлении, и представляет собой всœем знакомый электрический ток.

    Металлическая связь. Свойства металлической связи. - понятие и виды. Классификация и особенности категории "Металлическая связь. Свойства металлической связи." 2017, 2018.